Updated optics layout and machine performance November, 2016. Paris R. Tomás for WP2 Many thanks to P. Azzi, G. Arduini, X. Buffat,

R. de Maria, L. Medina & B. Petersen

Optics, layout and beam changes V1.2-V1.3

★ Round β*=20 cm, limited by realistic tolerances of the triplet beam screen and cold bore¹
 ★ Flat β^{*}_{x/y}=40/15 cm, limited by Q4 aperture
 ★ Pre-squeeze β* increased by 2 cm to 50 cm
 ★ L* shortened by 8 cm (L*=22.92 m)
 ★ IR1 & IR5:

- Q4 & Q5: MQY @ 1.9 K, moved towards arc by 10 m and 11m, respectively
- Q6: MQML @ 4.5 K
- Additional MS in Q10
- ★ IR6 Q5: Single MQY @ 1.9 K
- ★ Crab cavities halved (2, compatible with 4)
- ★ Bunch length increased to 1.2 ns (9 cm)

 $^{^1 \}rm we$ can protect an aperture of 12σ for elements protected by TCTs and $17\text{--}18\sigma$ for elements that are not protected by TCTs

E. Shaposhnikova, 78th WP2 Meeting

1.1 ns (8.1 cm) for 400 MHz with 1.1×10^{11} ppb at the end of the fill OK

1.7

3.6

2.0

2.4

200 & 400 MHz

(BSM)

6.0

3.0

Q4: MQYY -> MQY

- 2xMCBYY+MQYY replaced by Mask+4xMCBY+MQY.
- Mask: same of Q5 (1.5 m length, 1 m active material as first guess F. Cerutti)
- Q4 becomes bottleneck for flat optics.
- Work ongoing to reassess requirements of orbit correctors.

Can we have 3 MCBY instead of 4?

★ Requirements:

- $\bullet\,$ Allow orbit control at CC of $\pm 0.5 \text{mm}$
- Allow IP orbit offset of up to $\pm 2\text{mm} \rightarrow$ to be confirmed by the experiments
- Allow for crossing angle in both planes
- ★ The present CC assembly alignment range might be smaller than required
- ★ Present actions:
 - Review of CC alignment possibilities
 - Implications on operational flexibility
 - Clarification from detectors on maximum IP offset

Number of crab cavities halved

Number of crab cavities halved

HL-LHC virtual luminosity in 2016

TCC meetings: https://indico.cern.ch/category/7361/

Assumptions for performance evaluation

- ★ Round $\beta^*=20$ cm, flat $\beta^*_{x/y}=40/15$ cm
- \star Crossing angle: round 12.5 σ , flat 11.9 σ
- ★ bunch length 9 cm
- \star Leveled luminosity of 5×10³⁴ cm⁻²s⁻¹
- ★ 160 days of physics (Run 4)
- \star \approx 50% efficiency for 3000 fb⁻¹
- \star Burn-off with total cross section (111 mb)
- ★ Ultimate: $7.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ and ≈60% efficiency for 4000 fb⁻¹

Baseline fill

CMS Experiment at the LHC, CERN Data recorded: 2016-Oct-14 09:33:30.044032 GMT Run / Event / LS: 283171 / 95092595 / 195

\approx 90 vertices

ATLAS, 2016

 \approx 90 vertices

Experimental Data Quality WG

Pile-up density deteriorates relevant *signals* in a linear fashion \rightarrow **Effective density is the average**

Effective pile-up density, $\overline{ ho}$,for a fill

The larger $\overline{\rho}$ is, the larger the inefficiency.

Potential improvements

- ★ # of bunches 2736 → 2800 with 80 bunch trains ★ Crossing angle $12.5\sigma \rightarrow 10\sigma$, $\beta^*=15$ cm
 - Need improved MKD-TCT phase and
 - TCT reduced retraction.
 - LHC shows 10σ is OK for BBLR at 1.1×10^{11} ppb

For the future:

★ Burn-off cross section 111 mb \rightarrow 81 mb

- Recent MDs show 81 mb would be too optimistic
- DA issues?
- Need further simulations
- ★ Bunch length 9 cm \rightarrow 8.1cm

Trains of 80 bunches in the LHC

Trains of 80 bunches should allow for \approx 2800 collisions in IP1&5 (\approx +2% in lumi)

Crossing angle $12.5\sigma \rightarrow 10\sigma$, $\beta^*=15cm$

Crossing angle $12.5\sigma \rightarrow 10\sigma$, $\beta^*=15cm$

Effective Vs peak pile-up density

Effective PU density [events/mm]

Almost linear relation since all luminous regions are almost Gaussian \rightarrow Flatter luminous regions will deviate

Performance Vs $\overline{\rho}$

Effective PU density [events/mm]

Not having crab cavities costs 10% of the luminosity in the nominal scenario and 17% in the ultimate (and \approx 20% in $\overline{\rho}$)

★ HL-LHC integrated luminosity goals remain at reach thanks to efficiencies 52% & 60%• LHC has demonstrated about 60% efficiency \star Potential improvements are under study • Optimization of $\overline{\rho}$ • Crossing angle $12.5\sigma \rightarrow 10\sigma$, $\beta^*=15cm$ • 80 bunch trains. etc ★ Risk mitigation requires studying: • 8b+4e and 200 MHz for unbearable e-cloud Flat optics for CC failure

Back-up slides

Parameter table I (1.2ns)

	Base	8b+4e
E [TeV]	7	7
N_{b} [10 ¹¹]	2.2	2.3
n _{bunches}	2748	1968
IP1&5 colls	2736	1960
N _{tot} [10 ¹⁴]	6.04	4.53
beam current [A]	1.10	0.82
x-sing angle $[\mu rad]$	512	480
beam separation $[\sigma]$	12.5	12.5
β^* [m]	0.2	0.2
$\epsilon_n \left[\mu m \right]$	2.5	2.5
$\epsilon_L [eVs]$	3	3
E spread [10 ⁻⁴]	1.2	1.2
bunch length [cm]	9.0	9.0
IBS horizontal [h]	22.1	16.1
IBS longitudinal [h]	29.5	24.2
Piwinski parameter	2.8	2.8

Parameter table II (1.2ns)

	base	8b+4e
Loss factor no CC	0.34	0.34
Loss factor with CC	0.67	0.69
beam-beam no CC [10 ⁻³]	3.6	4.3
beam-beam with CC $[10^{-2}]$	0.86	1.1
Peak Lumi without CC $[cm^{-2}s^{-1}10^{34}]$	5.95	5.3
Virtual lumi with CC $[cm^{-2}s^{-1}10^{35}]$	1.17	1.09
Pile-up without lev CC	157	195
Leveled lumi [<i>cm</i> ⁻² <i>s</i> ⁻¹ 10 ³⁴]	5.3	3.8
Pile-up with lev CC	140	140
Peak pile-up density	1.3	1.3
Leveling time [h]	4.7	5.9
Number of collisions IP2/IP8	2452/2524	1163/1868
N_b at injection $[10^{11}]$	2.3	2.4
n _b per injection	288	224
N _{tot} per injection [10 ¹³]	6.6	5.4
Emittance at injection $[\mu m]$	2	1.7

Crossing angle $12.5\sigma \rightarrow 10\sigma$, $\beta^*=15cm$

Cross section for burn-off

