

WP12: Progress on the vacuum system design

V. Baglin on behalf of WP12

6th HL-LHC Collaboration Meeting, Paris, 14-16th November 2016

OUTLINE

- 1. HL-LHC beam screens
- 2. HL-LHC Layout
- 3. LS2
- 4. Summary

1. HL-LHC Beam Screen

1.1 Design Studies

The technical trigger of the upgrade: Radiation damage in low-beta triplet region

The Shielded Beam Screens (BS) are key devices of the HL-LHC project

Shielded Beam Screen Concept

Assembly of the beam screen

Elastic supporting system: Low heat leak to the cold bore tube at 1.9K Ceramic ball with titanium spring Cold bore (CB) at 1.9 K: 4 mm thick tube in 316LN

Tungsten alloy blocks:

- Chemical composition: 95% W, ~3.5% Ni, ~ 1.5% Cu
- mechanically connected to the beam screen tube: positioned with pins and titanium elastic rings
- Heat load: 15-25 W/m

C. Garion

Thermal links:

- In copper
 - Connected to the absorbers and the cooling tubes or beam screen tube

Beam screen tube (BS) at ~ 50 K:

- Perforated tube (~2%) in High Mn High N stainless steel (1740 l/s/m (H2 at 50K))
- Internal copper layer (80 $\mu m)$ for impedance
- a-C coating (as a baseline) for e- cloud mitigation

Cooling tubes:

- Outer Diameter: 10 or 16 mm
- Laser welded on the beam screen tube

Progress & next Milestones

Thermal and quench models of the beam screen/ cold bore assembly are developed
→ Under validation against experimental investigations (mid 2017)
Beam screen and cold bore mechanical design completed

- → CB prototypes produced, tolerances to be fixed by end 2016
- → Beam screen prototypes to be produced, tolerances to be frozen by end 2017
- Interconnection baseline with deformable RF bridge
- Beam Screen Finishing Facility ready by mid 2107

10 m long CB prototype

Reception test of the gantry crane

More details by C. Garion in parallel session

V. Baglin - 6th HL-LHC Collaboration Meeting, Paris, 14-16th November 2016

1.2 a-C Coating Performances Studies

a-C Coating for Electron Cloud Mitigation

a-C coating is proposed to mitigate electron multipacting to reduce the heat load on the beam screen and the background to the experiments.

• It has a maximum SEY of 1 + - 0.1 = - no or little multipacting is expected

• The coating is currently under evaluation at cryogenic temperature in the laboratory and with LHC type protons beams in COLDEX.

V. Baglin - 6th HL-LHC Collaboration Meeting, Paris, 14-16th November 2016

Adsorption Isotherms at 4.2 and 77 K

- ~ 500 nm thick coating
- H_2 , CO and CH_4
- At 4.2 K, the capacity is much more than one monolayer (10^{15} $\rm H_2/cm^2)$
- The capacity decrease with increasing temperature
- The coating is porous
- Capacity ~ 100 x Cu

• Next steps:

Pumping speed & adsorption isotherms and isosteres in the 20-100 K range, set-up available by spring 2017

a-C Coating Thermal Desorption Spectroscopy

• The larger the coverage, the lower the desorption temperature.

• Binding energies are in the range 100-500 meV and decrease with surface coverage

A-L. Lamure

	H2	CH4	CO	CO2
Peak in 40-60 K	Any coverage	For coverage > 10 ¹⁷ CH ₄ /cm ²	For coverage > 2 10 ¹⁶ CO/cm ²	For coverage $> 10^{18} \text{ CO}_2/\text{cm}^2$

Potential modification of the proposed BS operating temperature

a-C Coating Studies with COLDEX

 $\rm H_2$ is desorbed in the range 40-60 K

- N₂ and CO are desorbed above 80 K
- The activation energy (temperature) for desorption (release) is dependent on the coverage

A possible new operating temperature window for the beam screen could be ~ 60-80 K

- The cryosorption capacity for H₂ is ≥ 2.10¹⁷ H₂/cm² below 10 K
- It is intermediate between metallic surfaces and common cryosorbers

Observation of Beam-Gas Ionisation with COLDEX

- COLDEX's electrode is sensitive enough to measure beam gas ionisation!
- Sensitivity ~ 0.1 nA i.e. $\sim 4.10^6 \text{ e}/(\text{mm}^2 \text{ s})$

$$I_{e^-} \propto \sigma_i(H_2, p) n_{\rm gas} I_{\rm beam}$$

HILUMI HL-LHC PROJECT R. Salemme, PhD Thesis

a-C Coating Performances Studies with COLDEX

No dynamic pressure larger than 10⁻⁹ mbar due to ESD is observed for:

- bare surface
- surface coverages of:
 - \circ ~3 10¹⁶ H₂/cm², ~2 10¹⁶ CO/cm^{2,} ~3 10¹⁶ CO₂/cm²
- Measured dynamic heat load are within:
 - 0.2 +/- 0.1 W/m for all studied cases
- No multipacting electron activity is measured above 0.1 nA

Electron pick-up inserted

a-C coating and Synchrotron Radiation

KEK Collaboration:

- 4 KeV critical energy (x100 LHC)
- Desorption yields of a-C coating larger than stainless steel

M. Ady

Conditioning with beam

Uncoated stainless steel vacuum fired 10-1 10-1 10-2 SD yield η (molecules/photon) SD yield η (molecules/photon) 10-2 10-3 10-3 10-4 104 10-5 10-5 10-6 10-6 total - CO H_2 CO 10-7 10-7 CH₄ 10-8 10-8 10¹⁸ 10¹⁹ 10²⁰ 10²¹ 10²² 10¹⁷ 1023 Photon dose (photons/m)

BINP Collaboration:

- Set-up under construction
- Unbaked sample at room and cryogenic temperature
- ~ 50 eV critical energy
- Results expected by ~ mid-end 2017

V. Baglin, A. Krasnov (BINP)

a-C Coating and Thermal Outgassing

Unbaked a-C coated stainless steel tube, 450-500 nm thick:

- Mass spectrum is water dominated
- ~ x 30 unbaked stainless steel
- 2nd pump down very similar to 1st one
- After 10h pumping:
 - Stainless steel = 2 10⁻¹⁰ mbar.l/s/cm²
 - a-C coating = $6 \ 10^{-9} \text{ mbar.l/s/cm}^2$

2. HL-LHC Layout

17

Vacuum Chambers Apertures

Input beam aperture table from WP2

New vacuum chambers and vacuum modules to be designed / produced for D1-Q4 region

Additional inner diameters standards: 91 and 248.1 mm

	HL-LHC	Vacuum chamber	
	beam aperture [mm]	aperture [mm]	
D1	0 - 130		
D1 - TAXN	130 - 233	VCT - 212.7 - VCT - 248.1	
TAXN	85	VCTY	
TAXN - D2	85	91	
D2	87		
D2 - Q4	85	91	
Q4	72.41		
Q4 - Q5	72.41	80	
Q5	57.8		
Q5 - Q6	57.8	80	
Q6	45.1		
Q6 - Q7	45.1	80	

P. Santos Diaz

New VAX area in IR1 and 5

Move the instrumentation in front of Q1 to the experiment's cavern to reduce radiation to the personnel: robustness, remote handling and tooling are required

- Installation in LS3 during TAS exchange, the impact on the experimental vacuum chamber beam pipe is under study
- TAXS-Experiments & Q1-TAXS areas studies are coordinated by WP8
- Unbaked a-C coated TAXS

Pumping and bellow to decouple room temperature TAXS from cryogenic temperature triplet

TAXN – D2 area

Tertiary collimation to protect IT from incoming beams Longitudinal layout defined but without 5th axis for collimation (except TCTPV)

- New designs:
 - 2 beam in one vessel for TCL and TCTH (responsibility of the collimation project, WP5).
 - New bellows and RF transitions.
 - New chambers, supports etc.
- Base line (in collaboration with survey): minimise radiation to the personnel during intervention
 - Supports of vacuum equipment are aligned by survey during installation.
 - Vacuum components are exchangeable without re-alignment of the supports+ chamber system
 - Smoothing, when needed, during LS

Layout D2-Q4: crab cavities area

- Room temperature sectors (except CC modules): bakeable and NEG coated
- 2 sectorised CC modules: unbaked, operating at cryogenic temperature (2K)
- 3 types of sector valves assemblies (VAB)
- Non-crabbed vacuum chamber, operating at 2 K, needs to be designed with a beam screen type system

More details in WP4 parallel session

21

3. LS2

a-C coating: In-Situ Implementation

 Length to be *in-situ* coated: ~45 meters per "string" (Q1, Q2, Q3, DFBX & D1) of LSS2 and LSS8

 Development of a "modular sputtering source" that can be inserted in a 150 mm slot and pulled by cables along D1 and the triplets

Status

- Magnetron sputtering of a graphite cathode using permanent magnets with Ti underlayer + molecular dragging (@ 1W/cm; p_{Ar}= 0.1 mbar).
- δ_{max}< 1.1 along 4 m!

More details by P. Costa Pinto in parallel session

CERN

5. Summary

Summary

The design of the HL-LHC vacuum system baseline is progressing very well.

In the past year, many progresses have been done in all areas of the project:

- Cold bores & beam screens:
 - → design to be frozen by 2017 for a production to start by 2018
- Baseline design for interconnects and conceptual design for cold to warm transitions.
 - → production to start by 2019
- Performance evaluation of the a-C coating at cryogenic temperature.
 - → a performance evaluation in the LHC ring would be a real asset.
- Definition vacuum layout.
 - → studies to be continued during 2017.
- Production of *in-situ* a-C coating.
 - → on good track for implementation during LS2.

Thank you for your attention

V. Baglin - 6th HL-LHC Collaboration Meeting, Paris, 14-16th November 2016

Back-up slides

Adsorption Isotherm & Thermal Desorption Spectroscopy (TDS) Setup

a-C coating at Studies with COLDEX

COLDEX Studies with SPS beams:

- A 2 m long LHC type cryogenic beam vacuum system
- A beam screen temperature from 10 to 80 K and a cold bore temperature from 3 to 4.5 K
- Measure of pressure, heat load and electron activity without and with gas condensates

HL-LHC Baseline

Applicable to new and upgraded components: LSS1, LSS5 and part of LSS2, 4, 8 → arcs excluded !

Room temperature vacuum system:

→ same as LHC base line

Cryogenic temperature vacuum system:

→ a-C coated beam screens when needed to mitigate multipacting in order to reduce:

1) Background to the experiments

- 2) Heat load on the beam screens e.g. IT in all LSSS !
- a-C performances must be validated at cryogenic temperature

Current Layout LSS5R

LHCLSXH__0010 and LHCLSXHT__0010

Excel Overall Vacuum Layout

Hand made ! No official HL-LHC data base yet

Identification of new vacuum equipment needed: allowed to reduced WP12 CtC!

	Туре	HL-LHC QTY	LHC reused	Total QTY required
Vacuum chamber	-	37	22	15
Vacuum module	-	78	17	61
Support	-	86	44	42
Vacum valvos	DN100*	18	4	14
vacuiti valves	DN150	1	0	1
lon pump	-	≈33	33	0
Pening gauge- VGPB	-	38	28	10
Alpert gauge - VGIA	-	8	6	2
Pirani gauge - VGRB	-	25	17	8
CF63 valve - VVFM	-	24	16	8
VVRD - Rupture disc	-	7	3	4

*crab cavities VV not included. If they are included + 8 VV DN100

P. Santos Diaz

Laser Engineered Surface Structures: LESS

A studied alternative to a-C coating. Principle: laser treatment of a tube at atmospheric pressure

Collaboration with university of Dundee and ASTEC Challenges: validate vacuum performances by mid-2017:

- Outgassing thermal and stimulated
- Produce a tube and realise implementation on the field
- Test liners installed in SPS BA5 and in COLDEX (EYETS 2016-17)

A. Abdolvand *et al.*, Dundee University' s samples

Paris, 14-16th November 201