Injection and Dump System Status C. Bracco, M.J. Barnes, J. Borburgh, M. Calviani, E. Carlier, C. Di Paolo, L.S. Ducimetiere, M.I. Frankl, M.A. Fraser, L. Gentini, B. Goddard, A. Lechner, E. Lopez Sola, N. Magnin, A. Perillo Marcone, V. Senaj, L. Vega Cid, C. Wiesner ## **Scope and Outlook** Scope: upgrade of the LHC injection and extraction system to adapt to increased beam brightness and intensity - Injection system: - TDI - MKI - LBDS: - MKD switches and controls - TCDS and TCDQ - MKB-TDF - Summary and major upcoming milestones # **Injection System** ## **Injection System** MKI: beam induced heating, vacuum and e-cloud improvements. Prototype development → installation in baseline (2018 YETS). Installation of new MKI series in LS3 **TDI**: upgraded with a new segmented hardware (**TDIS**), IP2 & IP8 → installation in **LS2** D1 (TCDD): shielding insert in D1, IP2 and IP8 → installation in LS2 **Diamond BLMs**: additional detectors and acquisition (on-going) TCLIA: possible displacement toward IP (IP2 only) and increase full gap → LS2 E-cloud results in high pressure adjacent to and in the kicker magnet tanks which, when pulsing the kickers, increases the probability of an electrical breakdown → Interlock on instantaneous pressure adjacent to and in kicker tanks and also integrated pressure in kicker tanks. Interconnect on Q5 end of MKI8 presently limiting operation, due to e-cloud →Increase the limit from 6e-8 to 6.3e-8 mbar and to limit bunch charge to 1.19e11 ppb During EYETS 2 x 400 l/s NEG cartridges will be added next both kicker systems → expected x2-3 reduction in vacuum pressure → expected max. pressure of 3e-8 mbar with 2808 nominal bunches Treatment of ceramic chambers to reduce SEY (target SEY = 1.4). Note: "naked" ceramic has an SEY of ~10. Six treated samples of high purity alumina received from University of Dundee (UK) → SEY measurements and microscopy performed. Next: larger samples for vacuum and HV behaviour investigations. Table 1: maximum values and remarks for each sample | remarks | SEY max | sample | |----------------------|---------|---------| | | 2.2 | PS1_C1R | | | 1.6 | PS2_C1R | | outlier 1.9 | 1.7 | PS2_C2R | | inhomogenous | 1.9 | PS2_L1R | | | 2.2 | PS2_L2R | | | 2.5 | PS4_L1R | | Courtesy: H. Neupert | | | Treatment of ceramic chambers to reduce SEY (target SEY = 1.4). Note: "naked" ceramic has an SEY of ~10. - Six treated samples of high purity alumina received from University of Dundee (UK) → SEY measurements and microscopy performed. Next: larger samples for vacuum and HV behaviour investigations. - Two high purity Alumina samples have been Cr₂O₃ coated (25 and 50 nm thick coating) by Polyteknik (Denmark): M. Barnes E. Garcia-Tabares Valdivieso Treatment of ceramic chambers to reduce SEY (target SEY = 1.4). Note: "naked" ceramic has an SEY of ~10. - Six treated samples of high purity alumina received from University of Dundee (UK) - → SEY measurements and microscopy performed. Next: larger samples for vacuum and HV behaviour investigations. - Two high purity Alumina samples have been Cr₂O₃ coated (25 and 50 nm thick coating) by Polyteknik (Denmark): - Preparing to install a short coated liner in the SPS (2017 EYETS) with suitable e-cloud monitoring to qualify the coating with beam before coating a ceramic chamber for an MKI kicker magnet. - Next step: coat a 3 m long chamber for the prototype to be installed in YETS 2018. M. Barnes - Magnetic permeability falls very quickly when the temperature reaches the Curie point. - For the type of ferrite used in the LHC MKI the Curie temperature is 125 °C. During operation temperature has to be always below this limit to avoid a mis-injection of the beam. Thermal simulation studies with **improved ANSYS model** (7 cells, Post-LS1+**ferrite** ring design) Beam impedance simulations, with CST, show **highly non-uniform power deposition** along the length of MKI ferrite yoke (**confirmed** with **temperature measurements** in the LHC) - As a result of the very good vacuum within the tank, and the design of the kicker magnet, cooling is mainly by thermal radiation between the ferrite and the tank - Presently the limiting factor to radiative cooling of the ferrite is the low emissivity of the inner side of the vacuum tank. Hence there is a strong interest to increase this emissivity (without degrading the vacuum properties) - Several techniques are being investigated (coating, electro-chemical attack, laser treatments): the goal is to treat vacuum tank of prototype to be installed in YETS 2018- coating to be firstly vacuum qualified ## New ferrite with higher Curie Temperature and improved cooling. Four ferrite samples ordered and received, from National Magnetics Group Inc., for outgassing measurements (3 pcs of plates 10mm x 50mm x 50mm) and for magnetic measurements (3 pcs of toroids 23.2mm OD x 14.7mm ID x 7.7mm Ht): Outgassing measurements being carried out by M. Dinc and C.Y. Vallgren (VSC) at CERN - Undesirable having high temperature (increased outgassing) - Ferrite in first 5 cells (of 33 total) could be changed | Ferrite | Tc (°C) | Bs (T) | Br (T) | Hc (A/m) | Denisty (g/cc) | u' | |-------------------------|---------|--------|--------|----------|----------------|------| | CMD5005 | 130 | 0.33 | 0.13 | 9.5 | 5.27 | 1150 | | CMD10 | 250 | 0.43 | 0.29 | 28.6 | 5.2 | 650 | | CN20 | 185 | 0.4 | 0.26 | 15.9 | 5.24 | 650 | | CMD5005/CMD10 | | | | | | | | 50/50 blend (average of | 190 | 0.38 | 0.21 | 19.10 | 5.24 | 900 | | above values) | | | | | | | ## **TDI – Operational Issues** **Beam induced heating** and consequent **deformation** of the beam screen (plastic) and the jaws (elastics) Not possible to define a direct correlation between LVDT drift (no loss of protection estimated by measuring the position of the "warm" jaw wrt the beam) expansion without deformation ## **TDI – Operational Issues** **Beam induced heating** and consequent **deformation** of the beam screen (plastic) and the jaws (elastics) **Significant pressure rise** during injection and spurious spikes during fill with jaws retracted (hBN blocks non conformities limiting maximum allowed injected intensity in 2015) ## **TDI – Operational Issues** **Beam induced heating** and consequent **deformation** of the beam screen (plastic) and the jaws (elastics) **Significant pressure rise** during injection and spurious spikes during fill with jaws retracted (hBN blocks non conformities limiting maximum allowed injected intensity in 2015) Presently applied changes: - Reinforced stainless steel beam screen - Ti coating on Al block (reduce SEY) - hBN replaced with graphite R4550 with Cu coating - Improved contact of cooling pipes - CuBe blocks replaced by CuCrZr - Interferometric system for direct gap measurement ## **New Hardware: TDIS (segmented)** Three independent shorter modules (1.5 m each) → improve alignment accuracy and reduce beam induced deformation. The modules are installed on a common girder, aligned on surface and transported as a single device in the tunnel (spares under vacuum and ready for installation with reduced bake out in the tunnel). ### Design being finalised: - Materials (graphite or 3D-CFC) - RF fingers between adjacent modules. - Cu coating for impedance reduction - Coating against e-cloud - ... # Internal review on December 1st 2016 at CERN HiRadMat tests (on hold due to SPS TIDVG issues) ## LHC Beam Dump System (LBDS) ## LHC Beam Dump System (LBDS) 121.1 MKD Q4 **MSD** TCDQ Q4 **TCDS** (absorber) **TCSP** (sec. coll.) **TCDQM** (mask) **TCDQ** (absorber) **TCTs** IR1/5 T. TCDS T. TCDQ MKD: switch, triggering and controls upgrades. Strongly linked to switch consolidation (LS3). **TCDS**: upgraded with new version (third module). Install in **LS3**. **TCDQ**: performance validation On going studies **MKB-TDE**: need for additional dilutors or dump upgrade? ## **MKD Switches and Control Upgrade** Present operational margins (in terms of electric breakdowns) too small for reliable operation at 7TeV (now and in the HL-LHC era) → redesign of the switch stack of MKD generators ongoing to keep electrical field below 1.5 MV/m in all areas ## **MKD Switches and Control Upgrade** - Present operational margins (in terms of electric breakdowns) too small for reliable operation at 7TeV (now and in the HL-LHC era) → redesign of the switch stack of MKD generators ongoing to keep electrical field below 1.5 MV/m in all areas - Upgrade of present Power Trigger Module (PTM): several internal modifications done resulting in 1.7 kA peak and 2 kA/us at 3 kV (today 500A peak and 400A/us at 3.5 kV) → increase lifetime of the GTO switches and make the power trigger less sensitive to radiation. - Upgrade of the retrigger system which triggers all the extraction and dilution kickers in case of an erratic triggering of an extraction kicker → reduce retrigger delay from 900 ns to 700 ns → reduce the load on the ring elements, in particular the tertiary collimators, in case of an asynchronous dump. Replace obsolete electronics of the retriggering system ## **MKD New Erratic Type** ## Identified new type of erratic (type 2): - During an asynchronous beam dump, part of this energy is deposited on the TCDS and the TCDQ: - 16-32 bunches intercepted by TCDQ → up to 3.8 MJ (nominal LHC beam intensity @ 6.5 TeV) with a maximum close to the jaw surface. - 28 bunches intercepted by TCDS → up to 3.3 MJ (nominal LHC beam intensity @6.5 TeV) almost uniformly distributed. - HL-LHC: 7 TeV, up to 2.3E11 ppb → up to 7MJ on TCDS and 8 MJ on TCDQ. ## **TCDQ Performance Validation** TCDQ was upgraded during LS1 to withstand impacts of up to 2.3E11 ppb in case of a Type 1 erratic. FULKA and ANSYS Studies were performed to validate the robustness of the TCDQ and the protection to the downstream elements (Q4-Q5) for all failures (Type 2) and smaller beam sizes. | Material | C-C 1.75 | C-C 1.4 | Graphite
R4550 | |-------------------|----------|---------|-------------------| | Max. Temp. [°C] | 1138 | 1280 | 28 | | Min. Princ. [MPa] | -30,3 | -30,8 | -3 | | Compr. Strength | -69.6 | -69.6 | 130 | | Max. Princ. [MPa] | 35 | 28 | 2 | | Tensile Strength | 61 | 61 | 40 | Need to assess Q4-Q5 damage limit (possible adding a mask in front of Q5 if needed) M. Frankl, A. Lechner, C. Di Paolo ## **TCDS Performance Validation** FLUKA and ANSYS simulation studies done to define energy deposition on the **TCDS** absorber and the downstream MSDA (type 2 erratic). ## Maximum energy deposition: - 1.7 kJ/cm3 on high density CFC: OK - 0.4 kJ/cm3 on Ti: not OK (plastic deformation) → different material needed? ### Temperature increase at MSDA yoke: - 87 K → 110°C absolute temperature. Not critical for change in magnetic properties of ferrite (ok up to 150°C) - Peak temperature in plate and instantaneous > no issue for coil insulation - Temperature increase at the vacuum chamber up to 83 K for the stored beam → critical for Mu-metal layer - Quantify energy deposition and temperature increase of water in MDS cooling pipes → risk of a pressure rise and possible consequent shockwave - A third module will be added to further reduce energy deposition on MSDA. ## MKB Failures and TDE Upgrade | E. l | _opez | So | 6 | |------|-------|----|---| |------|-------|----|---| | Component | Regular sweep
Maximum temperature | 1H Kicker failure
Maximum temperature | 2H Kicker failure
Maximum temperature | |----------------------|--------------------------------------|--|--| | Dump core | 1920°C | 2150°C | 2810°C 🚹 | | Titanium window | 170°C | 200°C | 250°C | | CFC window | 43°C | 46°C | 68°C | | Stainless steel foil | 48°C | 63°C | 75°C | Close to sublimation temperature! #### Downstream Ti window | Case | Max
temperature | Max Von Mises
eq. Stress | Minimum
yield strength | Safety
factor | |-------------------|--------------------|-----------------------------|---------------------------|------------------| | Regular
sweep | 170°C | 113 MPa | 180 MPa | 1.6 | | 1H Kicker failure | 200°C | 124 MPa | 150 MPa | 1.2! | | 2H Kicker failure | 250°C | 142 MPa | 130 MPa | 0.9 🗘 | ### Stainless steel foil | Case | Max temperature | Maximum VM eq. stress | Safety factor | |-------------------|-----------------|-----------------------|---------------| | Regular sweep | 48°C | 65 MPa | 2.6 | | 1H Kicker failure | 63°C | 125 MPa | 1.4 | | 2H Kicker failure | 75°C | 140 MPa | 1.2 🗘 | M. Frankl, A. Lechner, E. Lopez Sola # **Summary and Major Upcoming Milestones** - LS2: upgraded injection elements installed in the LHC - TDIS: internal review in Dec. 2016 → final decision on materials, impedance related mechanical aspects (RF fingers, ferrite, etc.) → prototype ready in 2018. - MKI: HV and vacuum qualification of Cr₂O₃ coatings to be completed in 2017 together with vacuum qualification of vacuum tank treatment → prototype in LHC YETS 2017-2018 → decision on series production of coated chambers and treated vacuum tanks. - LS3: upgraded dump elements plus new MKI series installed in the LHC - Feasibility studies for integration of two additional MKBHs to be completed by the end of 2016 or further mitigations. - Possible TDE upgrade studies completed by end 2020. # Thank you for your attention!