

Energy deposition in the triplet-D1 region and the matching section: update to v.1.3

A. Tsinganis, F. Cerutti (EN/STI/FDA) with R. De Maria (BE/ABP)

6th Annual HiLumi Collaboration Meeting – Paris, November 14-16, 2016

Outline

- Layout and optics
- Triplet interconnects and BPMs
- Results for v.1.3
 - Total power / Peak dose / peak power density
- Radiation in the tunnel
- Summary
- IP displacement

Layout and optics

Energy deposition in the triplet-D1 region and the matching section: update to v.1.3

Simulated geometry (triplet-D1)

• HL-LHCV1.3 (255 μ rad half crossing angle, β^* =20cm)

Various updates:

- Cryostat (position, composition) (info from D. Ramos)
- Detailed VAX added
- Realistic BS shielding extension to 45° (20% filling factor, explicitly modelled)
- Interconnects (see next section)

VAX model by I. Efthymiopoulos & I. Bergstrom

Simulated geometry (matching section)

D2

- Major change: Q4 & associated correctors
 - Now at 70mm coil aperture
- Masks already in place in front of Q4, Q5 (TCLMB) and Q6 (TCLMC)
 - Present on both bores
- Updated RR shielding
- All collimators in place
 - TCLs @ 13.5σ (instead of 12σ)
 - TCTs @ 12σ TAXN (instead of 10.9σ)

Triplet interconnects and BPMs

with T. Lefevre, R. Jones, D. Draskovic (BE/BI) C. Garion, R. Kersevan, R. Fernandez-Gomez (TE/VSC)

Energy deposition in the triplet-D1 region and the matching section: update to v.1.3

Triplet interconnects and BPMs

- Peak dose values in the triplet using the first FLUKA implementation of the interconnects with incorporated BPM were presented at last annual meeting (October 2015)
 - https://indico.cern.ch/event/400665/contributions/1843468/
- A peak value of 48MGy at the IP face of Q2B was predicted for 4000fb⁻¹ (36MGy after re-baselining to 3000fb⁻¹) for horizontal crossing
- The interruption of the Inermet BS shielding in the interconnect was indicated as the primary cause of this localised problem

Proposed cure

- It was shown that alternative optics and crossing scenarios could significantly reduce the peak value
 - HOWEVER, some of these solutions are dependent on specific hardware availability (e.g. wire compensation)
- It was proposed to investigate local design improvements with the view of reducing the shielding interruption
- **Constraint:** any additional shielding element would only be effective if its radial position matches that of the BS shielding
- Improvements to the interconnect design in the direction of increasing the shielding were investigated
 - Results presented at Sep. 1st TCC meeting
 - https://indico.cern.ch/event/559125/contributions/2268948/

Shielding improvements

"Circular" BPM **Addition of 7cm Inermet insert** on non-IP side

Peak value reduction by ~15% • Further ~15% reduction

"Octagonal" BPM with incorporated 18cm Inermet pieces on the mid-planes (retaining 7cm insert)

Summary of results

Peak dose profile in the inner coils (L_{int} = 3000 fb⁻¹) HL–LHCV1.2 Round horizontal 295 µrad

TCC decision (used for v.1.3 calculations):

- Interconnect with shielded BPM only before Q2B (for now)
- Interconnect with 7cm insert kept elsewhere

Results for v.1.3

Energy deposition in the triplet-D1 region and the matching section: update to v.1.3

Comparison with v.1.2: peak dose in the triplet

Peak dose profile in the inner coils (L_{int} = 3000 fb⁻¹) HL-LHCV1.3 Round 255 μ rad

- The situation does not change significantly
- The decrease of the crossing angle (295→255µrad) is in principle expected to contribute beneficially, but not noticeably (<10% decrease in peak dose)

12

Triplet-D1: Peak dose profile

Energy deposition in the triplet-D1 region and the matching section: update to v.1.3

Triplet-D1: Peak power density profile (L=5.0x10³⁴ cm⁻² s⁻¹)

Peak power density values below 3mW/cm³ everywhere

Total power (triplet-D1) (L=5.0x10³⁴ cm⁻² s⁻¹)

	Vertical		Horizontal		
Magnets	Magnet cold mass	Beam screen	Magnet cold mass	Beam screen	
	Power [W]				
Q1A + Q1B	114	170	113	169	
Q2A + corr.	101	68	99	65	
Q2B + corr.	126	87	136	100	
Q3A + Q3B	134	80	119	70	
СР	54	62	42	46	
D1	79	56	67	46	
Beam pipe extensions	21	72	21	64	
TOTAL	629	595	597	560	

Matching section: peak power density profile (L=5.0x10³⁴ cm⁻² s⁻¹)

Vertical crossing Horizontal crossing Peak power density profile in the inner coils (L = $5.0 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$) Peak power density profile in the inner coils (L = $5.0 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$) 1.4 1.4 HL-LHCV1.3 vertical 255 μrad – Outgoing (1) He-HL-LHCV1.3 vertical 255 μrad – Incoming (2) HL-LHCV1.3 horizontal 255 μrad – Outgoing (1) He-HL-LHCV1.3 horizontal 255 μrad – Incoming (2) 1.2 1.2 D2 D2 ²eak power density [mW / cm³] 6 MGy/3000fb⁻¹ 0.8 0.8 12 MGy/3000fb⁻¹ 0.6 0.6

260

270

250

- Dose values /3000fb⁻¹ up to 12MGy in front face of D2 (for horizontal crossing)
- **CRITICAL POINT:** the overall good result (despite the significant restriction of the Q4 aperture) is expected to be largely due to the beneficial presence of the masks on the outgoing beam bore (especially before Q4), as well as the TCLs and the TCTs on the incoming beam bore

0.4

0.2

140

150

160

170

180

190

200

Distance from IP [m]

210

220

230

240

250

260 270

16

Peak power density [mW / cm³]

0.4

0.2

0

140

150

160

170

180

190

200

Distance from IP [m]

210

220

230

240

07

Total power (matching section) (1/2)

	Vertical		Horizontal			
Magnets	Magnet cold mass	Beam screen (b1/b2)	Magnet cold mass	Beam screen (b1/b2)		
	Power [W]					
D2 + corr.	17	1.0 / 0.1	36	2.2 / <1mW		
Q4 + corr.	6.4	1.3 / 0.8	9.0	2.2 / 1.0		
Q5 + corr.	0.8	<1mW	1.0	0.04 / <1mW		
Q6 + corr.	0.9	<1mW/0.03	2.4	<1mW / 0.1		
Q7 + corr.	0.1	<1mW	1.3	0.2 / <1mW		
Other						
TAXN (85mm)	1087		736			
Crab cavities	40-60mW (b1) / 15mW (b2)		130-190mW (b1) / 30mW (b2)			

Total power (matching section) (2/2)

	Vertical		Horizontal			
Collimators	Inner/ upper jaw	Outer/ lower jaw	Inner/ upper jaw	Outer/ lower jaw		
	Power [W]					
TCLX4.B1	25	53	190	88		
TCTPV4.B2	11	6	3.6	3.6		
TCTPH4.B2	5	19	1.6	8.6		
TCL5.B1	7	45	14	81		
TCL6.B1	10	32	13	24		
TCTV6.B2	0.9	0.9	0.3	0.4		
TCTH6.B2	0.4	0.05	0.3	0.03		
Masks	Beam 1	Beam 2	Beam 1	Beam 2		
TCLM4	19	1.3	22	0.6		
TCLM5	2.6	1.3	4.3	0.8		
TCLM6	0.7	0.06	1.8	0.06		

Radiation in the tunnel

with R. Garcia Alia (EN/EA)

Energy deposition in the triplet-D1 region and the matching section: update to v.1.3

Radiation in the tunnel (250fb⁻¹)

R1 - High energy hadrons $[cm^{-2}/250fb^{-1}]$, -10cm < Y < 10cm

Dose, thermal and 1MeV neutron equivalent fluence & high energy hadron fluence estimated

- HE hadron fluence in RRs:
 - Up to 2x10¹⁰cm⁻²
 near entrance
 - few x 10⁹cm⁻²
 elsewhere

Peak dose profile in the tunnel (x=-1.6m, y=0)

- In general, higher levels in the matching section for horizontal crossing
 - Locally due to greater impact on TCL4, overall due to greater leakage through the TAN and subsequent losses on various elements

21

Summary

- Situation in the triplet-D1 region remains largely unchanged in v.1.3 (no major changes in the layout)
- Use of shielded BPM in interconnect before Q2B is important
- Despite reduced Q4 aperture, peak dose and peak power density values in the matching section remain acceptable, largely due to the presence of masks on the outgoing beam (especially before Q4), as well as TCLs and TCTs
- Usefulness of masks on incoming beam is more debatable
 - Could become more important for accident scenarios (e.g. asynchronous beam dump on TCT6)
- Quantities relevant for R2E, instrumentation, VAX area etc. are available
- Further studies: IP displacement

IP displacement

- Possibility of IP displacement by few mm is foreseen
- Not studied yet for HL-LHC, but results exist for a previous upgrade scenario

IP displacement

24

TAXN effectiveness

 Greater leakage in the horizontal case, hence the lower power on the TAN itself and higher radiation in the matching section

Triplet-D1 BS shielding

Extension of shielding to 45° explicitly modeled

27

Peak dose minimisation scenarios

Comparison of three mixed scenarios:

Further studies: flat optics

- Two flat optics scenarios were also studied for both vertical and horizontal crossing
 - 150 μ rad half-crossing angle, $\beta_x^* / \beta_y^* = 40 / 10$ cm
 - 210 μ rad half-crossing angle, $\beta_x^* / \beta_y^* = 40 / 10$ cm
- Sensitivity of results to changes in bunch length and beam divergence is limited
- On the contrary, the crossing angle plays an important role
 - Lower dose for lower crossing angle

Vertical crossing

Horizontal crossing

Energy deposition in the Triplet-D1 region (V1.2) | 5th Joint HiLumi LHC-LARP Annual Meeting – CERN, October 26-30, 2015 | AT