Linear Optics Measurements and Corrections

Jaime Maria Coello de Portugal OMC Team

Introduction

- Linear optics corrections are vital in the LHC as them:
 - Ensure that no aperture issues coming form β -beating happen.
 - Guarantee performance making the beams collide at the designed $\beta*$.
 - Ease the operation of the machine.
- HiLumi is expected to be more challenging than the current LHC
 - 6 strong sources of errors per side per IR (as opposed to 4 in the LHC).
 - Lower beta-star -> very high β in the triplets, amplifying the errors.
 - The powering scheme lets less degrees of freedom (4 trims for 6 magnets):

Local phase corrections: Segment-by-segment

Local corrections: Waist shifts

• In the past, just the phase advance was used to correct local errors in the IRs. The phase advance can be insensitive to waist shifts.

• K-modulation has been used in the current LHC with good success to refine the correction removing the waist shifts.

β from k-modulation corrections

K-modulation:

- The average β-function in the triplet computed from the change in tune produced by the modulation.
- Its precision depends critically on the precision on the measurement of the tune.

Tune noise from current ripple

- The ripple was reduced in the specification from 1ppm to 0.1ppm*.
- No important effect on β -beating was found.
- Moving to the new powering scheme allowed for better compensation of the current ripple:

*Private communication from Miguel Cerqueira Bastos

β from k-modulation corrections

- The tune noise will limit the performance of k-modulation.
- Simulations show a considerable error in the measurement with such uncertainty in the tune, but the modulation should improve the measurement.
- In the current LHC we get results compatible with $\delta Q \leq 10^{-5}$.
- Flat optics will be slightly harder to measure with K-modulation.

β from amplitude corrections

- β from amplitude can be another source of precise measurement of the β function.
- Problem: it is strongly BPM calibration dependent.
- Now it deviates about 3% rms* with respect to K-modulation measurements.

ATS Optics measurements in the LHC

Beam 1	β* [m]
IP1 horizontal	0.184 ± 0.002 (-14%)
IP1 vertical	0.213 ± 0.001 (1%)
IP5 horizontal	0.22 ± 0.02 (4%)
IP5 vertical	0.26 ± 0.01 (19%)

Beam 1 K-modulation results before global corrections.

- Local corrections from the normal commissioning used.
- These corrections are the result of 7 years of iterations, it is hard to achieve for an automatic local correction with no human intervention.
- Before global corrections: RMS β -beating 9% and peak 24%.

ATS Optics measurements in the LHC

Beam 2	β* [m]
IP1 horizontal	0.213 ± 0.006 (1%)
IP1 vertical	0.212 ± 0.003 (1%)
IP5 horizontal	0.219 ± 0.009 (4%)
IP5 vertical	0.214 ± 0.002 (2%)

Beam 2 K-modulation results before global corrections.

- K-modulation performed only before global corrections.
- Final β -beating ~5% -> errors from the arcs are under control. We may expect a bit more in HL-LHC as the pre-squeeze $\beta*$ is 50cm.

HL-LHC local corrections

- To have statistics for the HL-LHC, 100 of possible "machines" are generated.
- Each of them will have 10 units of quadrupolar errors in every quadrupole of the triplet.
- $0.7 \cdot 10^{-3}$ rms uncertainty in phase (current precision in the LHC*) assumed in the arcs focusing quadrupoles, and extrapolated to the rest of the points.
- An **automatic** correction of the local errors is performed only in the relevant segments, using only the triplet itself.
- The resulting errors and corrections are applied into the full ring.
- A global correction using non-common magnets is then performed for refinement.

LHC simulations of current situation

- LHC at β *=40cm simulations.
- 1% precision on K-modulation.

• The β -beating in the IP is the expected one understanding that it is an automatic correction.

HL-LHC "LHC-like" scenario

- HL-LHC at $\beta *=20$ cm.
- 1% precision in K-modulation.

- The correction is always well closed.
- The β -beating in the IP looks good enough but can become a performance issue, with and RMS of ~9% and peak around ~70% β -beating. Human intervention will help.

HL-LHC errors progression

- HL-LHC at $\beta *=20$ cm.
- Progression of the β *-beating with decreasing K-modulation precision:

• It will be critical to have a precise measurement of the β function close to the IR.

Local coupling correction in the HL-LHC

- The tilts on the triplet quadrupoles can be a strong local source of coupling.
- The Segment-by-segment technique is also suitable to find and correct local coupling sources.
- Local coupling peaks are unavoidable as there are only 2 correctors for 12 sources of error in each IR.

Local coupling correction in the HL-LHC

- K-modulation requires ΔQ_{min} below ${}^{\sim}6x10^{-4}$ to get to the 1% precision level.
- Coupling corrections of ΔQ_{min} below 10^{-3} have already been demonstrated in the LHC*.
- Simulations show that the coupling coming from the Hilumi triplet tilt can be corrected to this level.
- Improved MAD-X coupling treatment -> way better results.

Conclusions

- An accurate β -function measurement in the interaction region will be critical to correct the β *-beating and guarantee the machine performance.
- K-modulation may no reach the needed precision in Hilumi, we need backup plans:
 - β from amplitude?
 - Luminosity scans?
- The errors coming from the arcs don't seem to be a problem -> tested in ATS MD.
- Coupling looks correctable to the levels needed to guarantee K-modulation performance.

Challenging situation foreseen for Hilumi local optics...

...and more challenges from non-linear optics now.

