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Outline
 Beam-bean long range (BBLR) wire 

compensation

 BBLR in the LHC

 Initial proposal and basic considerations

 BBLR for HL-LHC and refined configuration

 Experimental conditions evolution and final 

proposal

 Simulations of beam lifetime evolution with 

BBLR compensation

 Alternative compensation with octupoles

 Summary
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 Beam-beam (LR) kick (round beams)

with beam separation

Wire compensation
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 Beam-beam (LR) kick (round beams)

with beam separation

 Neglecting form factor (sufficiently large separation), 

can be approximated by an “infinite” wire

with wire separation

J.P.Koutchouk, LHC Note 223, 2000
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 Beam-beam (LR) kick (round beams)

with

 Neglecting form factor (sufficiently large separation), 

can be approximated by an “infinite” wire

with

 The simple conditions for matching the effects are

i.e. integrated current of 5.5 Am/encounter for 

nominal LHC and 10.6 Am/encounter for HL-LHC

Wire compensation
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Compensation constraints: locality
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 BBLR encounters occurring at ~π/2 from either IP side

 Phase advance still ~ π/2 up to D2/Q4 (and the lower β*, the better)
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Compensation constraints: optics
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 Optics strictly anti-symmetric L/R of the IP

 Optics symmetric between Q1s, where 50% of encounters occur
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Compensation constraints: optics
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BBC BBC

 Initial idea of BBC wire location, where β-functions are large and with aspect 

ratio

 In principle, one wire from one IP side (and double the current) will have the 

same compensation effect (compensating LR encounters near IP)

J.P.Koutchouk, LHC Note 223, 2000
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Experimental test constraints: hardware
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BBC BBC

 Integration between D1 and TAN quite challenging

 Use wires embedded in tertiary collimators between D2 and Q5 for 

proof-of-principle tests T.Rijoff, CERN-THESIS-2012-377

R.Steihagen, 3rd HI-LUMI Meeting, 2013
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Optimal β aspect ratio
 Recent studies for HL-LHC revealed that optimal 

compensation can be achieved for unique β aspect 

ratio (strictly depending on triplet layout)

 For HL-LHC optimal or 1/2 

 For nominal LHC,  or 0.6 S. Fartoukh et al., PRSTAB, 2015

Reduced crossing angle 

of  450μrad @ 15cm
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Experimental test constraints: optics
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 Between TAN and Q5, ( ), one wire per IP does not provide 

good compensation (optics anti-symmetry)

 Need two wires per IP, powered individually in symmetric locations
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Optics at TCT locations: IP5
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 IR5: Horizontal TCT and TCL replaced with wire-embedded 

collimators

 Optics very close to anti-symmetric between the two locations

IP
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Optics at TCT locations: IP1
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 IR1: Vertical TCT replaced with wire-embedded collimator 

 New TCL downstream of Q4 (for beam 2), as location next to D2 crowded

 Optics not close to anti-symmetric especially for small corresponding β

IP

TCTPVATLASTCL

146 m173 m
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Experimental scenarios
 In both IR1 and 5, wire location to almost π/2 from IP (max 

deviation of 2.5
ο
)

 Both optics are far from optimal β-function ratio and IR1 far 

from anti-symmetric

 For IR5, β-function ratios of around 0.4-2.6

 For IR1, β-function ratios of around 2.5-0.2

Y.Papaphilippou - 11/15/2016 16

Conclusions of the Lyon workshop
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Experimental scenarios
 In both IR1 and 5, wire location to almost π/2 from IP (max 

deviation of 2.5
ο
)

 Both optics are far from optimal β-function ratio and IR1 far 

from anti-symmetric

 For IR5, β-function ratios of around 0.4-2.6

 For IR1, β-function ratios of around 2.5-0.2

 Two experimental scenarios considered

I. With optics adjustments
 Optics to achieve strict anti-symmetry for left side of IR1 and/or more optimal beta 

aspect ratio in both

 Compensating only one IP (IP5), with the other IP not-squeezed and non-colliding 

(synergy with optics MDs)

 Necessitate commissioning time

II. With commissioned 2017-2018 machine optics (nominal or ATS) 

 Use all 4 wires and adjust distance/current for best compensation

 All experiments in a Weak-strong regime, i.e. a few low-current 

blown-up bunches in beam2 (machine protection) against a full 

train in beam1
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Conclusions of the Lyon workshop
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“Lifetime” simulations with 

SIXTRACK
 Initial distribution composition

 Matched 6D Gaussian tracked for 106 turns

 “Beam Core” + “Beam Halo” (2 times 104 macro-particles) 

with 3 times bigger beam size, statistically weighted with the 

“core”

Beam core (in blue) + beam halo (transverse 

size ~ 3 times bigger)

“Halo” statistically weighted with the “Core”

A.Patapenka, S. Valishev et al.
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Tracking and 

compensation parameters
 Beam intensity 1.2x1011, with nominal 25~ns bunch separation and 

β* = 40cm

 Transverse emittances: 2.5 (weak and strong beam) & 4.0 μm (weak 

beam)

 Energy 6.5 TeV, energy spread 1.12E-4, bunch length of 7.5 cm

 Chromaticity of 3 & 15 units, Octupole current of 0 & 550 A, no 

multi-pole errors

 Beam-beam interactions at IP1 & 5

 Compensation with 4 wires per beam (2 per IP) at TCT locations

 Preliminary results for 2 wires in IP5

 Wire separation matching the average BBLR separation given by the 

crossing angle 

 Wire current estimated with optimization procedure minimizing (Δpwire

- ΔpBBLR) for the given optics

 Linear tune shift due to wires corrected back to nominal working 

point

Y.Papaphilippou - 11/15/2016
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Beam intensity decay
A.Patapenka, S. Valishev et al.

 Tracking for 106 turns and estimation of beam intensity 
decay constant λ (either from liner fit, for slow decay, or 
from direct fit to exponential for fast decay)
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Impact of Octupoles and 

Chromaticity
 Decay constant as a 

function of full crossing 

angle:

 Black: Chromaticity of 15,

octupole current of 550 A, 

emittance of weak beam  

of 2.5 μm

 Red: Chromaticity of 15, 

octupole current of 550 A, 

emittance of weak beam  

of 4.0 μm

 Blue: Chromaticity of 3, 

zero octupole current, 

emittance of weak beam  

of 2.5 μmStat. error >30-50%

A.Patapenka, S. Valishev et al.

[μrad]
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Impact of compensation

 Black: No 

compensation, weak 

beam emittance of 

2.5 μm

 Red: Compensation 

with 4 wires

 Green: 

Compensation with 2 

wires in IP5

A.Patapenka, S. Valishev et al.
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Impact of compensation

 Black: No 

compensation, weak 

beam emittance of 4 

μm

 Red: Compensation 

with 4 wires

A.Patapenka, S. Valishev et al.
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Beam profile evolution

Beam Gaussian shape as a function of time: IΟ=550A, Q’=15, ε = 4.0 μm 

180 μrad, compensation is OFF 180 μrad, Compensation is ON

220 μrad, compensation is OFF 220 μrad, Compensation is ON

A.Patapenka, S. Valishev et al.
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Alternative compensation
D.Pellegrini et al.

 Octupoles with negative polarity increase DA 

(reduce BBLR octupole-like tune-spread
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Alternative compensation
D.Pellegrini et al.

 Effect of octupoles is more pronounced 

with ATS,  (lower crossing angle reach)
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Summary
 BBLR Compensation concept evolved 

significantly since its first proposal

 Experimental plan for BBLR devised taking 
into account:
 Layout, optics constraints and schedule

 Initiated beam distribution simulations 
(lifetime, profile evolution) reflecting 
experimental scenarios
 On-going work for simulating scenario 1 with one IP 

(IP5)

 Alternative compensation with octupoles (and 
ATS optics) is being observed in simulations
 Tests to be done in MD in 2017-2018
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Thanks for your attention

Y.Papaphilippou - 11/15/2016 28


