Transverse Damping Requirements

Elias Métral for the instability team (and BE-ABP-HSC section)
Contents
Contents

- Introduction
Contents

- Introduction
- Predicted beam stability without e-cloud
Contents

- Introduction
- Predicted beam stability without e-cloud
- Highest bunch brightness reached so far
Contents

- Introduction
- Predicted beam stability without e-cloud
- Highest bunch brightness reached so far
- News on destabilising effect of linear coupling
Contents

- Introduction
- Predicted beam stability without e-cloud
- Highest bunch brightness reached so far
- News on destabilising effect of linear coupling
- Is leveling by transverse offset a viable option?
Contents

- Introduction
- Predicted beam stability without e-cloud
- Highest bunch brightness reached so far
- News on destabilising effect of linear coupling
- Is leveling by transverse offset a viable option?
- E-cloud induced instabilities
Contents

- Introduction
- Predicted beam stability without e-cloud
- Highest bunch brightness reached so far
- News on destabilising effect of linear coupling
- Is leveling by transverse offset a viable option?
- E-cloud induced instabilities
- Conclusion
Introduction

- From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016
Introduction

- From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016
 - Linear coupling can have a destabilising effect on beam stability: simulations confirmed by a dedicated study with a single bunch
Introduction

From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016

- Linear coupling can have a destabilising effect on beam stability: simulations confirmed by a dedicated study with a single bunch
- Beam instability / stability with a transverse offset should be measured (beam stability predicted with sufficient damper)
Introduction

From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016

- Linear coupling can have a destabilising effect on beam stability: simulations confirmed by a dedicated study with a single bunch
- Beam instability / stability with a transverse offset should be measured (beam stability predicted with sufficient damper)
- Without e-cloud, a sufficient margin should exist for beam stability
Introduction

From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016

- Linear coupling can have a destabilising effect on beam stability: simulations confirmed by a dedicated study with a single bunch
- Beam instability / stability with a transverse offset should be measured (beam stability predicted with sufficient damper)
- Without e-cloud, a sufficient margin should exist for beam stability
- E-cloud is the main worry
Introduction

From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016

- Linear coupling can have a destabilising effect on beam stability: simulations confirmed by a dedicated study with a single bunch
- Beam instability / stability with a transverse offset should be measured (beam stability predicted with sufficient damper)
- Without e-cloud, a sufficient margin should exist for beam stability
- E-cloud is the main worry
 - What is the role of e-cloud in the instabilities observed since 2015?
Introduction

- From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016

 - Linear coupling can have a destabilising effect on beam stability: simulations confirmed by a dedicated study with a single bunch
 - Beam instability / stability with a transverse offset should be measured (beam stability predicted with sufficient damper)
 - Without e-cloud, a sufficient margin should exist for beam stability
 - E-cloud is the main worry
 - What is the role of e-cloud in the instabilities observed since 2015?
 - Can simulations explain the observations?
Introduction

From the Joint LARP CM26 / Hi-Lumi Meeting, SLAC, 19/05/2016

- Linear coupling can have a destabilising effect on beam stability: simulations confirmed by a dedicated study with a single bunch
- Beam instability / stability with a transverse offset should be measured (beam stability predicted with sufficient damper)
- Without e-cloud, a sufficient margin should exist for beam stability
- E-cloud is the main worry
 - What is the role of e-cloud in the instabilities observed since 2015?
 - Can simulations explain the observations?
 - What will happen for HL-LHC?
Predicted beam stability without e-cloud
Predicted beam stability without e-cloud

- Nominal collimator settings for HL-LHC parameters and machine components for the present baseline: 2 CC/beam/IP side and low-impedance collimators in LSS7. Assumed here DQW cavities and machine at the end of the pre-squeeze => Further work has been done to reduce the impedance of a remaining HOM at 920 MHz by a factor ~ 20 (new table from 21-10-2016 used)
Predicted beam stability without e-cloud

- Nominal collimator settings for HL-LHC parameters and machine components for the present baseline: 2 CC/beam/IP side and low-impedance collimators in LSS7. Assumed here DQW cavities and machine at the end of the pre-squeeze => Further work has been done to reduce the impedance of a remaining HOM at 920 MHz by a factor ~ 20 (new table from 21-10-2016 used)

-Beam is stable for a current in the Landau octupoles (LOF) < ~ 300 A, what ever the sign and even if the transverse tails would be cut down to ~ 3 σ
LOF < 0

Courtesy of N. Biancacci
LOF < 0

LOF > 0

Courtesy of N. Biancacci
Highest bunch brightness reached so far
Highest bunch brightness reached so far

- The HL-LHC bunch brightness has already been reached! =>
 In 2016 at 6.5 TeV, bunches of ~ 1.4 times higher brightness than for HL-LHC were brought into collision with very good lifetime (burn-off dominated)
Highest bunch brightness reached so far

The HL-LHC bunch brightness has already been reached! =>
In 2016 at 6.5 TeV, bunches of ~ 1.4 times higher brightness than for HL-LHC were brought into collision with very good lifetime (burn-off dominated)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [TeV]</td>
<td>7</td>
</tr>
<tr>
<td>Bunch population [10^{11}]</td>
<td>1.15</td>
</tr>
<tr>
<td>Transv. emittance [μm]</td>
<td>3.75</td>
</tr>
<tr>
<td>Brightness [$10^{11} / \mu$m]</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Highest bunch brightness reached so far

- The HL-LHC bunch brightness has already been reached! =>
In 2016 at 6.5 TeV, bunches of ~ 1.4 times higher brightness than for HL-LHC were brought into collision with very good lifetime (burn-off dominated)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
<th>HL-LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [TeV]</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bunch population (10^{11})</td>
<td>1.15</td>
<td>2.2</td>
</tr>
<tr>
<td>Transv. emittance [μm]</td>
<td>3.75</td>
<td>2.5</td>
</tr>
<tr>
<td>Brightness (10^{11}/μm)</td>
<td>0.31</td>
<td>0.88</td>
</tr>
</tbody>
</table>
The HL-LHC bunch brightness has already been reached! =>
In 2016 at 6.5 TeV, bunches of ~ 1.4 times higher brightness than for HL-LHC were brought into collision with very good lifetime (burn-off dominated)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>LHC 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [TeV]</td>
<td>7</td>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>Bunch population ([10^{11}])</td>
<td>1.15</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Transv. emittance [μm]</td>
<td>3.75</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Brightness ([10^{11} / \text{μm}])</td>
<td>0.31</td>
<td>0.88</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Factor 4.1!
Highest bunch brightness reached so far

- The HL-LHC bunch brightness has already been reached! =>

 In 2016 at 6.5 TeV, bunches of ~ 1.4 times higher brightness than for HL-LHC were brought into collision with very good lifetime (burn-off dominated)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LHC</th>
<th>HL-LHC</th>
<th>LHC 2016</th>
<th>Delta [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy [TeV]</td>
<td>7</td>
<td>7</td>
<td>6.5</td>
<td>- 7</td>
</tr>
<tr>
<td>Bunch population (10^{11})</td>
<td>1.15</td>
<td>2.2</td>
<td>1.9</td>
<td>- 14</td>
</tr>
<tr>
<td>Transv. emittance [μm]</td>
<td>3.75</td>
<td>2.5</td>
<td>1.5</td>
<td>- 40</td>
</tr>
<tr>
<td>Brightness ([10^{11} / \mu m])</td>
<td>0.31</td>
<td>0.88</td>
<td>1.27</td>
<td>+ 44</td>
</tr>
</tbody>
</table>

Factor 4.1!
- Lifetime at the beginning of the study (highest beam-beam tune shift, without extra noise) is burn-off dominated.
News on destabilising effect of linear coupling
News on destabilising effect of linear coupling

- The worry from 2012 (i.e. without e-cloud) has been partly dissipated with the discovery of the effect of linear coupling: see talk at the last HiLumi meeting. Since then, 2 additional info going in the same direction
News on destabilising effect of linear coupling

- The worry from 2012 (i.e. without e-cloud) has been partly dissipated with the discovery of the effect of linear coupling: see talk at the last HiLumi meeting. Since then, 2 additional info going in the same direction
 - Instability in physics with 600 bunches disappeared after coupling correction => A coupling (closest tune approach) of ~ 0.005 is bad!
News on destabilising effect of linear coupling

- The worry from 2012 (i.e. without e-cloud) has been partly dissipated with the discovery of the effect of linear coupling: see talk at the last HiLumi meeting. Since then, 2 additional info going in the same direction
 - Instability in physics with 600 bunches disappeared after coupling correction => A coupling (closest tune approach) of ~ 0.005 is bad!
 - A measurement from 2012 revealed an important coupling in October (~ 0.01)
Sunday 25/09/16, Fill #5332: Instability with 600 bunches
Sunday 25/09/16, Fill #5332: Instability with 600 bunches

- LOF were at 470 A, Q’ ~ 15 units and nominal damper
Sunday 25/09/16, Fill #5332: Instability with 600 bunches

- LOF were at 470 A, Q' ~ 15 units and nominal damper
Chart between 2016-09-25 15:47:00.000 and 2016-09-25 15:55:00.000 (LOCAL_TIME) Timescaled with REPEAT every 1 SECOND

- HX:BETASTAR_IP1
- LHC.BQBBQ.CONTINUOUS_HS.B1:EIGEN_AMPL_1
- LHC.BQBBQ.CONTINUOUS_HS.B1:EIGEN_AMPL_2

Locality Enhancing Experiment (HiLumi)

E. Métral, Paris, 15/11/2016
Timeseries Chart between 2016-09-25 15:47:00.000 and 2016-09-25 15:55:00.000 (LOCAL_TIME)

- Bump in |C^-|
- β^*
- B1H BBQ activity
- B1V BBQ activity
Timeseries Chart between 2016-09-25 15:47:00.000 and 2016-09-25 15:55:00.000 (LOCAL TIME) Timescaled with REPEAT every 1 SECOND

- Q_x _FB_Trim
- Q_y _FB_Trim
- β^*
- B1H BBQ activity
- B1V BBQ activity

Bump in $|\mathcal{C}|$
Similar picture as during our dedicated study on linear coupling.
BBQ coupling B2

BBQ coupling B1

=> B1

INSTABILITY

(600b)

40 cm reached at 15:49:53
Linear coupling was then corrected

40 cm reached at 15:49:53

40 cm reached at 09:17:09

40 cm reached at 16:26:21

Linear coupling was then corrected

40 cm reached at 09:17:09

40 cm reached at 16:26:21

Linear coupling was then corrected

40 cm reached at 09:17:09

40 cm reached at 16:26:21
Warning for BBQ coupling
=> Measurement from OMC team with AC dipole + pilot:

تانوي ~ 0.005 before correction

< 0.001 after correction

Linear coupling was then corrected
Could linear coupling have played an important role in the 2011-2012 End Of Squeeze Instability?
Could linear coupling have played an important role in the 2011-2012 End Of Squeeze Instability?

- Info from RogelioT: In 2012, very few linear coupling measurements took place at 60 cm
 - Commissioning in March => |C| ≤ 0.002: OK
Could linear coupling have played an important role in the 2011-2012 End Of Squeeze Instability?

- Info from RogelioT: In 2012, very few linear coupling measurements took place at 60 cm
 - Commissioning in March => $|C| \leq 0.002$: OK
 - Measurement during an MD on 12/10/2012: Huge coupling (~ 0.01)!
Could linear coupling have played an important role in the 2011-2012 End Of Squeeze Instability?

Info from RogelioT: In 2012, very few linear coupling measurements took place at 60 cm

- Commissioning in March => |C'| ≤ 0.002: OK
- Measurement during an MD on 12/10/2012: Huge coupling (~ 0.01)!

\[\alpha |C'| \approx 0.01 \] (before correction)
Could linear coupling have played an important role in the 2011-2012 End Of Squeeze Instability?

Info from RogelioT: In 2012, very few linear coupling measurements took place at 60 cm

- **Commissioning in March** => $|C| \leq 0.002$: OK
- **Measurement during an MD on 12/10/2012**: Huge coupling (~ 0.01)! => Was corrected for the MD but was not put in the nominal cycle after the measurement…

Model selected: 0.6m_b1_fullresponse_2012_10_12 LHCB1 Memory used: 428 Mb / 91

| C | ≈ 0.01 (before correction) |

Courtesy of R. Tomas
Could linear coupling have played an important role in the 2011-2012 End Of Squeeze Instability?

- Info from RogelioT: In 2012, very few linear coupling measurements took place at 60 cm
 - Commissioning in March => $|C| \leq 0.002$: OK
 - Measurement during an MD on 12/10/2012: Huge coupling (~ 0.01)! => Was corrected for the MD but was not put in the nominal cycle after the measurement…

$|C| \approx 0.01$ (before correction)

There was no request from our side at that time!
Is leveling by transverse offset a viable option?
Is leveling by transverse offset a viable option?

- The stability of the beams is reduced when colliding with an offset, BUT the model predicts sufficient margins with current machine and beam parameters.
Is leveling by transverse offset a viable option?

- The stability of the beams is reduced when colliding with an offset, BUT the model predicts sufficient margins with current machine and beam parameters.

![Graph showing damping time and chroma](image-url)
Is leveling by transverse offset a viable option?

- The stability of the beams is reduced when colliding with an offset, BUT the model predicts sufficient margins with current machine and beam parameters.

Courtesy of X. Buffat
Is leveling by transverse offset a viable option?

- No instabilities were observed in dedicated tests with reduced octupole current and chromaticity
Is leveling by transverse offset a viable option?

- No instabilities were observed in dedicated tests with reduced octupole current and chromaticity

- A strong instability was observed when the damper was off (as predicted)
Is leveling by transverse offset a viable option?

- No instabilities were observed in dedicated tests with reduced octupole current and chromaticity

- A strong instability was observed when the damper was off (as predicted)

- Some instabilities observed in ADJUST in the vertical plane of B1 during physics fill and some studies remain to be understood…
E-cloud induced instabilities
E-cloud induced instabilities

INJECTION: In 2016, moving to BCMS beam (with smaller transverse emittances), the beam became unstable at injection $=>$ Could be stabilised by increasing the current in the Landau octupoles: LOF increased from 20 A (knob = -1.5) to 40 A (knob = -3)
E-cloud induced instabilities

INJECTION: In 2016, moving to BCMS beam (with smaller transverse emittances), the beam became unstable at injection => Could be stabilised by increasing the current in the Landau octupoles: LOF increased from 20 A (knob = -1.5) to 40 A (knob = -3)

Fill #5217, 18/08/16 => Similar results for H and V

![Graph showing horizontal emittance over 25 ns slots with different octupole gains and settings.](image-url)
E-cloud induced instabilities

- Can this be explained by simulations?
E-cloud induced instabilities

- Can this be explained by simulations?

Octupole knob value to suppress emittance growth below 10% in 1000 turns.

\[\rho_e = 16 \times 10^{11} \text{ m}^{-3} \]

Courtesy of K. Li
E-cloud induced instabilities

- Can this be explained by simulations?

![Diagram showing Octupole knob value to suppress emittance growth below 10% in 1000 turns.](Image)

- $\rho_e = 16 \times 10^{11} \text{ m}^{-3}$

** Courtesy of K. Li **
E-cloud induced instabilities

Can this be explained by simulations?

Octupole knob value to suppress emittance growth below 10% in 1000 turns.

\[\rho_c = 16 \times 10^{11} \text{ m}^{-3} \]

1.50 µm

Courtesy of K. Li
E-cloud induced instabilities

- Summary
E-cloud induced instabilities

Summary

• E-cloud (from dipoles only) could explain the observations in V-plane
E-cloud induced instabilities

Summary

• E-cloud (from dipoles only) could explain the observations in V-plane
• However, the H-plane should be stable => Simulations ongoing adding e-cloud in quadrupoles, etc.
E-cloud induced instabilities

- **STABLE BEAM**: In 2016, signs of e-cloud induced instability in stable beam with batches of 72 bunches for $Q' \sim 15$
E-cloud induced instabilities

◆ **STABLE BEAM**: In 2016, signs of e-cloud induced instability in stable beam with batches of 72 bunches for Q’ ~ 15
 - Only vertical (B1&B2)
 - At the end of trains of 72 bunches
 - Emittance BU by a factor ~ 2
 - No beam loss
E-cloud induced instabilities

STABLE BEAM: In 2016, signs of e-cloud induced instability in stable beam with batches of 72 bunches for $Q' \sim 15$

- Only vertical (B1&B2)
- At the end of trains of 72 bunches
- Emittance BU by a factor ~ 2
- No beam loss

"Pop corn" instability
E-cloud induced instabilities

STABLE BEAM: In 2016, signs of e-cloud induced instability in stable beam with batches of 72 bunches for $Q' \sim 15$
- Only vertical (B1&B2)
- At the end of trains of 72 bunches
- Emittance BU by a factor ~ 2
- No beam loss

"Pop corn" instability

=> Was cured by increasing the vertical chromaticity (+7) in stable beam (to ~ 22)
E-cloud induced instabilities

- Possible mechanism?
E-cloud induced instabilities

- Possible mechanism?
E-cloud induced instabilities

- Possible mechanism?

 - Huge simulation work which seems to confirm the predicted effect

Courtesy of G. Iadarola and A. Romano
E-cloud induced instabilities

- Possible mechanism?

- Huge simulation work which seems to confirm the predicted effect
- If confirmed, should not be a problem for HL-LHC

Courtesy of G. Iadarola and A. Romano
Conclusion
Conclusion

◆ Impedance induced instabilities
Conclusion

- Impedance induced instabilities
 - ~ As predicted (or even better)
Conclusion

- Impedance induced instabilities
 - ~ As predicted (or even better)
 - A sufficient margin should exist
Conclusion

- Impedance induced instabilities
 - ~ As predicted (or even better)
 - A sufficient margin should exist

- 2 mechanisms are critical for beam stability (from both simulations and measurements)
Conclusion

- Impedance induced instabilities
 - ~ As predicted (or even better)
 - A sufficient margin should exist

- 2 mechanisms are critical for beam stability (from both simulations and measurements)
 - Linear coupling between the transverse planes => OK when corrected (at the ~ 0.001 level)
Conclusion

- Impedance induced instabilities
 - ~ As predicted (or even better)
 - A sufficient margin should exist

- 2 mechanisms are critical for beam stability (from both simulations and measurements)
 - Linear coupling between the transverse planes => OK when corrected (at the ~ 0.001 level)
 - E-cloud => From injection till stable beam!
Conclusion

In case of issues with transverse instabilities in the future, other remedies exist and are being studied
Conclusion

❖ In case of issues with transverse instabilities in the future, other remedies exist and are being studied

- Q”
Conclusion

- In case of issues with transverse instabilities in the future, other remedies exist and are being studied
 - Q’”
 - RFQ
Conclusion

- In case of issues with transverse instabilities in the future, other remedies exist and are being studied:
 - Q"
 - RFQ
 - Wide-band feedback system
Thank you for your attention!