# Energy deposition and thermo-mechanical studies for the LHC dump

M. Frankl, A. Lechner, C. Bracco, M. Calviani, M. Fraser, B. Goddard, E. Lopez Sola, A. Perillo Marcone, C. Wiesner

On behalf of HL-LHC WP14

6th HL-LHC Collaboration Meeting November 15<sup>th</sup>, 2016

### Introduction

#### Scope of this talk:

- Overview of the beam dump (TDE)
- Description of a regular beam sweep
- Simulation methodology for the calculation of the energy deposition in the TDE
- Energy deposition results for the TDE core (HL beam parameters and HL optics):
  - HL Std 25 nsec vs. LIU BCMS
  - regular Std beam sweep vs. failure scenarios
- Peak temperatures in the TDE core and windows
- Assessed stresses in window materials based on thermo-mechanical studies (ANSYS)



# Overview

**Beam Sweeps and Simulation Method** 

Simulation Results for TDE Core and Windows

Conclusions & outlook

Backup

## Protection devices/dumps and failure scenarios



- Single MKD module prefire:
  - $\circ \ \mathsf{TCDS} \to \mathsf{MSDs}$
  - TCDQ+TCDQM  $\rightarrow$  Q4, Q5, DS magnets
  - $\circ$  TCTs  $\rightarrow$  IR1/5 triplet, D1 (studied by WP5+WP10)
- Dilution (MKB) failure:
  - o TDE core and TDE windows, covered by this presentation

#### Assumed beam and optics parameters

- Beam parameters:
  - o Assumed the same normalized emittance and bunch intensity as for
    - $\rightarrow$  LIU protection/dump upgrades in SPS/TLs and
    - → HL-LHC WP14 protection upgrades in the LHC injection regions

| Beam           | $\epsilon_{x,y}^n$ | I <sub>b</sub>           |
|----------------|--------------------|--------------------------|
| HL Std 25 nsec | 2.08 $\mu$ m·rad   | 2.3×10 <sup>11</sup>     |
| LIU BCMS       | 1.37 $\mu$ m·rad   | 2.0×10 <sup>11</sup> (*) |

- $\circ\;$  This is a cautious approach, i.e. no emittance growth and no intensity loss in ramp
- Optics:
  - All studies carried out for optics version HLLHCV1.2
  - For each device, selected the worst case from flat/flat HV/round optics

• □ ▶ • □ ▶ • □ ▶ • □

### **TDE** location



### Material composition of the TDE core

#### Segmented TDE layout:



- LHC dump core consisting of high- and low-density graphite absorbers
- Diameter of 70 cm and a total absorber length of ~7.6 m
- High-density absorber blocks consist of polycrystalline graphite
- Graphite segments are shrink-fitted into a 12 mm thick stainless steel jacket

Image: A math a math

### Material composition of the TDE core

#### Low-density flexible Graphite sheets:



- Low-density graphite absorber made of 2 mm thick, flexible graphite sheets
- Graphite segments are shrink-fitted into a 12 mm thick stainless steel jacket
- Presence of outgassing groves, also providing passage for the N<sub>2</sub> along the core

### Material composition of the TDE windows

Upstream window:  $\rightarrow$  exposed to swept proton bunches

- Located ~10 m upstream of TDE core
- Isolates dump transfer line vacuum from nitrogen atmosphere
- CfC for robustness reasons, leak tightness assured by a thin steel layer

|    | Thickness | Material                    | Density              |
|----|-----------|-----------------------------|----------------------|
| #1 | 15 mm     | CfC (R SIGRABOND 1501G)     | $\sim$ 1.5 g/cm $^3$ |
| #2 | 0.2 mm    | Stainless steel (AISI 316L) | 8 g/cm <sup>3</sup>  |

**Downstream window:**  $\rightarrow$  exposed to longitudinal shower tail from TDE core

• Located ~13 cm downstream of last high-density core segment

|    | Thickness | Material                     | Density               |
|----|-----------|------------------------------|-----------------------|
| #1 | 10 mm     | Titanium Grade 2 (ASTM B265) | 4.5 g/cm <sup>3</sup> |



## Overview

# Beam Sweeps and Simulation Method

# Simulation Results for TDE Core and Windows

Conclusions & outlook

Backup

#### Beam sweep pattern

• Bunch positions at front face:



- Typical 'e' shape as effect of 6 horizontal and 4 vertical dilution kickers (MKBs)
- Gaps in the pattern as consequence of the LHC filling scheme

## Simulation Method



- FLUKA simulation of an entire beam dump with thousands of bunches impacting on TDE is not feasible, especially at high beam energies.
- Solution:
  - 1. FLUKA simulation of only one bunch and scoring of the energy deposition within the TDE
  - 2. Based on the results for one bunch, calculation of the superimposed energy deposition from all bunches in a beam dump by means of an external tool
  - 3. Energy deposition as base for temperature and stress calculations (ANSYS)



## Overview

# **Beam Sweeps and Simulation Method**

# Simulation Results for TDE Core and Windows

Conclusions & outlook

Backup

### Peak dose in the TDE core (HL-LHC std 25 ns vs. BCMS)



Peak dose higher for HL-LHC std 25 ns beams:

- Higher bunch intensity of Std beams
- Different LHC filling schemes for Std and BCMS beams → sweep pattern for BCMS with a less concentrated superposition of the beam energy

## Assumptions for a (realistic) worst case dilution failure



Bunch positions at front face:

Transverse energy density in core (3 m depth):



- Peak energy density/temperature in TDE core and windows:
  - o Depends on minimum sweep speed along sweep path
  - $\circ$  After about 15  $\mu$ s when the vertical dilution changes direction
  - Hence failure of H kickers more critical
- Realistic worst case scenario:
  - A failure (erratic or missing kick) can affect two MKBs in the same tank
  - Hence we assume as worst case that 2H kickers provide no kick  $(6V+4H \rightarrow 6V+2H)$

## Assumptions for a (realistic) worst case dilution failure

Transverse energy density in core (3 m depth):



Bunch positions at front face:

- Peak energy density/temperature in TDE core and windows:
  - o Depends on minimum sweep speed along sweep path
  - $\circ$  After about 15  $\mu$ s when the vertical dilution changes direction
  - Hence failure of H kickers more critical
- Realistic worst case scenario:
  - A failure (erratic or missing kick) can affect two MKBs in the same tank
  - Hence we assume as worst case that 2H kickers provide no kick  $(6V+4H \rightarrow 6V+2H)$

### Peak dose in the TDE core (HL-LHC std 25 ns)



- Regular sweep → peak dose ~ 3 kJ/g
- 1 MKBH missing → peak dose rising to ~4 kJ/g
- 2 MKBH missing → peak dose rising to > 5 kJ/g

< A > <

## Peak temp. in the TDE core/windows (HL-LHC std 25 ns)

#### E. Lopez-Sola

| Component            | Regular sweep<br>Maximum temperature | 1H Kicker failure<br>Maximum temperature | 2H Kicker failure<br>Maximum temperature |
|----------------------|--------------------------------------|------------------------------------------|------------------------------------------|
| Dump core            | 1920°C                               | 2150°C                                   | 2810°C 🚹                                 |
| Titanium window      | 170°C                                | 200°C                                    | 250°C                                    |
| CFC window           | 43°C                                 | 46°C                                     | 68°C                                     |
| Stainless steel foil | 48°C                                 | 63°C                                     | 75°C                                     |

- The temperatures in the dump core are very high in all cases
  - In the case of 2H kicker failure scenario close to sublimation temperature
  - Stresses in the beam direction negligible for a single Graphite 2 mm plate, but plates are compressed against each other
    - ightarrow they cannot be considered as individual thin plates
    - ightarrow need for a structural analysis of the full low-density segment

## Stresses in the TDE windows (HL-LHC std 25 ns)

#### E. Lopez-Sola

Titanium downstream window – Structural analysis



#### Stainless steel foil – Structural analysis

| Case              | Max temperature | Maximum VM eq. stress | Safety factor |                       |
|-------------------|-----------------|-----------------------|---------------|-----------------------|
| Regular sweep     | 48°C            | 65 MPa                | 2.6           | Very low safety       |
| 1H Kicker failure | 63°C            | 125 MPa               | 1.4           | factor for the kicker |
| 2H Kicker failure | 75°C            | 140 MPa               | 1.2 🚹         | failure cases         |

(Stainless steel 316L Minimum Yield strength = 170 MPa)



## Overview

# **Beam Sweeps and Simulation Method**

# Simulation Results for TDE Core and Windows

# **Conclusions & outlook**

# Backup

### Conclusions

#### • TDE core

- $\circ~$  Very high temperatures reached in the low density graphite
- For the 2H kicker failure scenario, almost at max. service temp. (~3000°C)

#### • TDE windows

- Upstream window: **very high stresses in stainless steel foil** for 1H and 2H kicker failure case
- Downstream Ti window: high risk for 2H kicker failure case (max stress > min yield strength), very high stresses even for regular sweep

## Long-term strategy for TDE

M. Calviani

- Current TDE shows limitation and critical points (operation)
- Ongoing studies on graphite behavior at high temperature
- Long-term strategy being assessed:
  - · 2017-2020:
    - → Complete the beam impact scenario studies, including dynamical and thermal analyses, plus detailed material studies and R&D
    - → Study & propose an engineering design capable of overcoming the operational limitations for HL-LHC beams while increasing reliability and dump monitoring (compatible with UD installation and transport)
  - $\circ~$   $\sim \! 2018/9$  : Decision point on the need to produce new dump cores
  - 2020-2024: Detailed engineering design and construction of new cores to be installed in LS3

イロト イポト イヨト イヨト



## Overview

# **Beam Sweeps and Simulation Method**

# Simulation Results for TDE Core and Windows

Conclusions & outlook

# Backup

#### Considered optics and $\beta$ -functions

- All studies presented here were carried out for HLLHCV1.2
- Selected the worst case for each device from flat/flat HV/round optics

| Device | Optics       | $\beta_x$ | $\beta_y$ | $\sqrt{\beta_x \beta_y}$ | Remark                       |
|--------|--------------|-----------|-----------|--------------------------|------------------------------|
| TCDQ   | HLLHCV1.2    | 497 m     | 167 m     | 288 m                    | flat, end of squeeze, B1     |
|        | Run 2 (2015) | 484 m     | 161 m     | 279 m                    | collision, B1                |
| TCDS   | HLLHCV1.2    | 168 m     | 174 m     | 171 m                    | flat HV, squeeze step 20, B2 |
|        | Run 2 (2015) | 155 m     | 231 m     | 189 m                    | collision, B1                |
| TDE    | HLLHCV1.2    | 5052 m    | 3714 m    | 4331 m                   | round, end of squeeze, B2    |
|        | Run 2 (2015) | 5076 m    | 3713 m    | 4341 m                   | collision, B2                |

M. Fraser

• □ ▶ • • • • • • • • • •

# Single 7 TeV bunch: max energy density in CfC vs $\sqrt{\beta_x \beta_y}$



- A certain change of β and hence of the transverse bunch size might be digestable (yet there are other constraints for β)
- Note: the beam is swept across the TCDS/TCDQ/TDE front face
  - $\rightarrow\,$  the peak energy density also strongly depends on the distance between neighbouring bunches in the sweep

#### Beam Sweeps: HL-LHC std 25 ns vs. BCMS



- HL-LHC std 25 ns: 2748 bunches
- BCMS: 2604 bunches