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Introduction

Scope of this talk:
• Overview of the beam dump (TDE)
• Description of a regular beam sweep
• Simulation methodology for the calculation of the energy deposition

in the TDE
• Energy deposition results for the TDE core (HL beam parameters

and HL optics):

◦ HL Std 25 nsec vs. LIU BCMS
◦ regular Std beam sweep vs. failure scenarios

• Peak temperatures in the TDE core and windows
• Assessed stresses in window materials based on

thermo-mechanical studies (ANSYS)
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Protection devices/dumps and failure scenarios
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• Single MKD module prefire:

◦ TCDS→ MSDs
◦ TCDQ+TCDQM→ Q4, Q5, DS magnets
◦ TCTs→ IR1/5 triplet, D1 (studied by WP5+WP10)

• Dilution (MKB) failure:

◦ TDE core and TDE windows, covered by this presentation

red = need to check material robustness
blue = need to check if sufficiently protected
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Assumed beam and optics parameters

• Beam parameters:

◦ Assumed the same normalized emittance and bunch intensity as for

→ LIU protection/dump upgrades in SPS/TLs and
→ HL-LHC WP14 protection upgrades in the LHC injection regions

Beam εn
x,y Ib

HL Std 25 nsec 2.08µm·rad 2.3×1011

LIU BCMS 1.37µm·rad 2.0×1011(*)

◦ This is a cautious approach, i.e. no emittance growth and no intensity loss in ramp

• Optics:

◦ All studies carried out for optics version HLLHCV1.2
◦ For each device, selected the worst case from flat/flat HV/round optics
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TDE location

CfC + SS support window

TDE graphite core
TDE Ti window
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Material composition of the TDE core

Segmented TDE layout:

  

70 cm 
(1.77 g/cm3)

2mm sheets 
(1.1-1.2 g/cm3)

8 cm
(1.72 g/cm3)

8 cm
(1.72 g/cm3)

70 cm 
(1.77 g/cm3)

342 cm

• LHC dump core consisting of high- and low-density graphite absorbers

• Diameter of 70 cm and a total absorber length of ∼7.6 m

• High-density absorber blocks consist of polycrystalline graphite

• Graphite segments are shrink-fitted into a 12 mm thick stainless steel jacket
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Material composition of the TDE core

Low-density flexible Graphite sheets:

High-temperature studies on Graphite ongoing, which will also show the
extent of damage above 3000◦C

• Low-density graphite absorber made of 2 mm thick, flexible graphite sheets

• Graphite segments are shrink-fitted into a 12 mm thick stainless steel jacket

• Presence of outgassing groves, also providing passage for the N2 along the
core
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Material composition of the TDE windows

Upstream window: → exposed to swept proton bunches

• Located ∼10 m upstream of TDE core
• Isolates dump transfer line vacuum from nitrogen atmosphere
• CfC for robustness reasons, leak tightness assured by a thin steel layer

Thickness Material Density

#1 15 mm CfC ( R©SIGRABOND 1501G) ∼1.5 g/cm3

#2 0.2 mm Stainless steel (AISI 316L) 8 g/cm3

Downstream window: → exposed to longitudinal shower tail from TDE core
• Located ∼13 cm downstream of last high-density core segment

Thickness Material Density

#1 10 mm Titanium Grade 2 (ASTM B265) 4.5 g/cm3
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Beam sweep pattern

• Bunch positions at front face:

Figure courtesy of C. Wiesner

• Typical ’e’ shape as effect of 6 horizontal and 4 vertical dilution kickers (MKBs)

• Gaps in the pattern as consequence of the LHC filling scheme
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Simulation Method

Single Bunch:
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Superposition: Temperature/Stress Analysis:

• FLUKA simulation of an entire beam dump with thousands of bunches impacting on
TDE is not feasible, especially at high beam energies.

• Solution:

1. FLUKA simulation of only one bunch and scoring of the energy deposition within
the TDE

2. Based on the results for one bunch, calculation of the superimposed energy
deposition from all bunches in a beam dump by means of an external tool

3. Energy deposition as base for temperature and stress calculations (ANSYS)
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Peak dose in the TDE core (HL-LHC std 25 ns vs. BCMS)
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Peak dose higher for HL-LHC std 25 ns beams:

• Higher bunch intensity of Std beams
• Different LHC filling schemes for Std and BCMS beams→ sweep pattern for BCMS

with a less concentrated superposition of the beam energy
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Assumptions for a (realistic) worst case dilution failure
Bunch positions at front face:

Figure courtesy of C. Wiesner

Transverse energy density in core (3 m depth):

Figure courtesy of M. Frankl

• Peak energy density/temperature in TDE core and windows:

◦ Depends on minimum sweep speed along sweep path
◦ After about 15µs when the vertical dilution changes direction
◦ Hence failure of H kickers more critical

• Realistic worst case scenario:

◦ A failure (erratic or missing kick) can affect two MKBs in the same tank
◦ Hence we assume as worst case that 2H kickers provide no kick (6V+4H→ 6V+2H)
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Peak dose in the TDE core (HL-LHC std 25 ns)
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• Regular sweep→ peak dose ∼3 kJ/g

• 1 MKBH missing→ peak dose rising to ∼4 kJ/g

• 2 MKBH missing→ peak dose rising to >5 kJ/g
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Peak temp. in the TDE core/windows (HL-LHC std 25 ns)

E. Lopez-Sola

• The temperatures in the dump core are very high in all cases

◦ In the case of 2H kicker failure scenario close to sublimation temperature

◦ Stresses in the beam direction negligible for a single Graphite 2 mm plate, but plates
are compressed against each other

→ they cannot be considered as individual thin plates
→ need for a structural analysis of the full low-density segment
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Stresses in the TDE windows (HL-LHC std 25 ns)

E. Lopez-Sola
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Conclusions

• TDE core
◦ Very high temperatures reached in the low density graphite
◦ For the 2H kicker failure scenario, almost at max. service temp.

(∼3000◦C)

• TDE windows
◦ Upstream window: very high stresses in stainless steel foil for 1H and

2H kicker failure case
◦ Downstream Ti window: high risk for 2H kicker failure case (max stress
> min yield strength), very high stresses even for regular sweep
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Long-term strategy for TDE

M. Calviani

• Current TDE shows limitation and critical points (operation)

• Ongoing studies on graphite behavior at high temperature

• Long-term strategy being assessed:

◦ 2017-2020:

→ Complete the beam impact scenario studies, including dynamical
and thermal analyses, plus detailed material studies and R&D

→ Study & propose an engineering design capable of overcoming the
operational limitations for HL-LHC beams while increasing reliability
and dump monitoring (compatible with UD installation and transport)

◦ ∼2018/9: Decision point on the need to produce new dump cores
◦ 2020-2024: Detailed engineering design and construction of new cores

to be installed in LS3
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Considered optics and β-functions

• All studies presented here were carried out for HLLHCV1.2

• Selected the worst case for each device from flat/flat HV/round optics

Device Optics βx βy

√
βxβy Remark

TCDQ HLLHCV1.2 497 m 167 m 288 m flat, end of squeeze, B1

Run 2 (2015) 484 m 161 m 279 m collision, B1

TCDS HLLHCV1.2 168 m 174 m 171 m flat HV, squeeze step 20, B2

Run 2 (2015) 155 m 231 m 189 m collision, B1

TDE HLLHCV1.2 5052 m 3714 m 4331 m round, end of squeeze, B2

Run 2 (2015) 5076 m 3713 m 4341 m collision, B2

M. Fraser
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Single 7 TeV bunch: max energy density in CfC vs
√

βxβy
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• A certain change of β and hence of the transverse bunch size might be digestable
(yet there are other constraints for β)

• Note: the beam is swept across the TCDS/TCDQ/TDE front face

→ the peak energy density also strongly depends on the distance between neighbouring
bunches in the sweep
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Beam Sweeps: HL-LHC std 25 ns vs. BCMS
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• HL-LHC std 25 ns: 2748 bunches

• BCMS: 2604 bunches
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