

MQXF quench protection

E. Ravaioli

with inputs from

GL. Sabbi (LBNL), G. Ambrosio, G. Chlachidze, S. Stoynev (FNAL),

H. Bajas, S. Izquierdo-Bermudez, F. Rodriguez-Mateos, D. Wollmann (CERN), and many other CERN and LARP colleagues

6th HL-LHC Collaboration Meeting

15 November 2016

• Summary of the MQXF quench protection report

- Circuit analysis
- Quench heater configuration
- CLIQ configuration
- Effect of strand parameters
- Worst-case analysis
- MQXFS01 and MQXFS03 quench protection tests
 - Quench heater delays
 - Quench integral studies
 - CLIQ performance
- Conclusions & next steps

CERN	HILUC HIL-LHC PRO	ni)	EDMS NO. 0000000	REV. 0.0	DRAFT
'Y	1		REFERENCE : LHC-EQCOD-XR-XXXXX		
		REPORT			
		[DQ]			
F	OR THE HIG	QUENCH PROTECTION	STUDIES NER TRIPLE		UIT
Abstract					
This docum circuit. The sensitivity a	ent describes the restudies include a con nalyses to conducto	sults of the quench protection studies mparison between the performance o r parameters, and failure scenarios.	for the High-Lumi f different protect	inosity LHC i tion system	inner triplet configuration
		TRACEABILITY			
Prepared by	// E. Ravaioli (Lawre	TRACEABILITY nce Berkeley National Laboratory, Ber	keley, CA)	Date: 20	16-11-04
Prepared by Verified by: National Lal	r: E. Ravaioli (Lawre F. Menendez Cama oratory, Berkeley, (TRACEABILITY nce Berkeley National Laboratory, Ber ra, F. Rodriguez Mateos, GL. Sabbi (La CA), H. Thiesen, A. Verweij, S. Yammin	keley, CA) wrence Berkeley e	Date: 20 Date: 22	16-11-04 YY-MM-DD
Prepared by Verified by: National Lal Approved b Bejar Alonss	r: E. Ravaioli (Lawre F. Menendez Cama Joratory, Berkeley, I y: G. Ambrosio (Fern J. JP. Burnet, R. De	TRACEABILITY nce Berkeley National Laboratory, Ber ra, F. Rodriguez Mateos, GL. Sabbi (La CA), H. Thiesen, A. Verweij, S. Yammin milab National Laboratory, Batavia, IL) milab National Laboratory, Batavia, IL)	keley, CA) wrence Berkeley e n. A. Ballarino, I. nn	Date: 20 Date: 20 Date: 20	16-11-04 YY-MM-DD YY-MM-DD
Prepared by Verified by: National Lai Approved b Bejar Alonss Distribution	r: E. Ravaioli (Lawrei F. Menendez Cama Jooratory, Berkeley, y. G. Ambrosio (Ferr b, JP. Burnet, R. De : N. Surname (DEP/-	TRACEABILITY nce Berkeley National Laboratory, Ber ra, F. Rodriguez Mateos, GL. Sabbi (La CA), H. Thiesen, A. Verweij, S. Yammin milab National Laboratory, Batavia, IL) nz, P. Ferracin, E. Todesco, D. Wollma GRP) (in alphabetical order) can also in	keley, CA) wrence Berkeley e , A. Ballarino, I. nn nn	Date: 20 Date: 20 Date: 20 Date: 20	16-11-04 YY-MM-DD YY-MM-DD 25
Prepared by Verified by: National Lah Approved b Bejar Alonso Distribution Rev. No.	r: E. Ravaioli (Lawree F. Menendez Cama boratory, Berkeley, y. G. Ambrosio (Ferr b, JP. Burnet, R. De : N. Surname (DEP/- Dote	TRACEABILITY nce Berkeley National Laboratory, Ber ra, F. Rodriguez Mateos, GL. Sabbi (La CA), H. Thiesen, A. Verweij, S. Yammin milab National Laboratory, Batavia, ILJ nz, P. Ferracin, E. Todesco, D. Wollma GRP) (in alphabetical order) can also in Description of Changes (majo	keley, CA) wrence Berkeley e, A. Ballarino, I. nn nclude reference tr r changes only, m	Date: 20 Date: 20 Date: 20 a committee inor change	16-11-04 YY-MM-DD YY-MM-DD 25 s in EDMS)
Prepared by Verified by: National Lah Approved b Bejar Alonso Distribution Rev. No. X.0	r: E. Ravaioli (Lawre F. Menendez Cama ooratory, Berkeley, o y: G. Ambrosio (Ferr y. JP. Burnet, R. De : N. Surname (DEP/ Date 20YY-MM-DD	TRACEABILITY nce Berkeley National Laboratory, Ber ra, F. Rodriguez Mateos, GL. Sabbi (La Al), H. Thiesen, A. Verweij, S. Yammin milab National Laboratory, Batavia, IL) nz, P. Ferracin, E. Todesco, D. Wollma GRP) (<i>in alphabetical order</i>) can also in Description of Changes (mojo [Description of changes]	keley, CA) wrence Berkeley e , A. Ballarino, I. nn nclude reference to r changes only, m	Date: 20 Date: 20 Date: 20 Date: 20 inor change	16-11-04 YY-MM-DD YY-MM-DD rs s in EDMS)
Prepared by Verified by: National Laid Approved b Bejar Alonso Distribution Rev. No. X.0	r: E. Ravaioli (Lawre F. Menendez Cama ooratory, Berkeley, (y: G. Ambrosio (Ferr y. JP. Burnet, R. De :: N. Surname (DEP/ Date 20YY-MM-DD	TRACEABILITY nce Berkeley National Laboratory, Ber ra, F. Rodriguez Mateos, GL. Sabbi (La A), H. Thiesen, A. Verweij, S. Yammin milab National Laboratory, Batavia, IL) nz, P. Ferracin, E. Todesco, D. Wollma GRP) (<i>in alphabetical order</i>) can also in Description of Changes (majo	keley, CA) wrence Berkeley e , A. Ballarino, I. nn nclude reference to r changes only, m	Date: 20 Date: 20 Date: 20 o committee inor change	16-11-04 YY-MM-DD YY-MM-DD rs s in EDMS)

This document is uncontrolled when printed. Check the EDMS to verify that this is the correct version before use

Simulated currents in the circuit

Simulated voltages to ground

Voltages to ground and between coil sections in Q1/Q3 are 40% lower than Q2a/Q2b

QH connection scheme

LARP

6th HL-LHC Collaboration Meeting – MQXF quench protection – E. Ravaioli

Options for the quench protection

with LEDET

Simulated voltages to ground

Effect of QH strip failures – Hot-spot T

Effect of QH strip failures – U to ground

Revision of the worst-case peak Uground

Guidelines followed to define the reference worst-case peak voltages to ground

- Values at <u>nominal current</u> (not at ultimate current) are chosen
- Worst-case failure includes <u>2 QH circuit failing simultaneously</u>
- Influence of <u>strand parameters</u> studied, but corrective measures can be taken to avoid reaching the worst conditions. Hence, the reference values <u>will not</u> <u>consider</u> the influence of strand parameters.

Following these guidelines, the voltage to ground reference values are:

- 0-QH: 868 V
- O-QH+I-QH: 928 V
- 0-QH+CLIQ: 667 V

The previous reference value was 520 V, calculated in the case of O-QH+CLIQ. The increase with respect to this value comes from the improvement in the <u>model</u> <u>accuracy</u> and from the detailed analysis of the effect of the <u>initial hot-spot position</u>.

However, it is recommended that no correction of the test values during electrical quality be asked, considering that prudent safety margins were applied $(2xU_{ground,peak} + 500 \text{ V}).$

- Summary of the MQXF quench protection report
 - Circuit analysis
 - Quench heater configuration
 - CLIQ configuration
 - Effect of strand parameters
 - Worst-case analysis
- MQXFS01 and MQXFS03 quench protection tests
 - Quench heater delays
 - CLIQ performance
 - Quench integral studies
- Conclusions & next steps

Cpr with simulated 7m MQXF baseline

Quench integral studies – MQXFS1b

6th HL-LHC Collaboration Meeting - MQXF quench protection - E. Ravaioli

⁶th HL-LHC Collaboration Meeting - MQXF quench protection - E. Ravaioli

LARP

Quench protection report prepared

- Extensive simulation work aimed at identifying
 - Performances of various quench protection options
 - Effect of strand parameters and quench location
 - Effect of QH failures
 - Peak currents in all circuit elements
- Option with only O-QH does not offer enough protection, either I-QH or CLIQ (or both) are needed as well. Combination of protection elements guarantees great redundancy.

Test results

- Quench protection up to nominal current successfully demonstrated
- CLIQ tested for the first time on an MQXF model. As expected, a significant reduction of the quench load is achieved with respect to O-QH only. Direct comparison with O-QH+I-QH not available from experimental results yet.
- Quench protection at low current assured by O-QH, baseline parameters ok

Next steps

- Test response time of inner-layer quench heaters at nominal current on MQXFS3
- Test CLIQ performance on MQXFS3
- Quench integral studies at nominal/ultimate current
- Compare test results with simulations with the same RRR and QH conditions

6 CLIQ units and 4 warm diode strings per triplet

AC currents

Parallel diodes only carry small current differences between magnets during the discharge

Voltages to ground just after triggering

CLIQ-induced voltage distribution

 The voltage distribution in the windings just after triggering CLIQ remains almost constant along the magnet length, but is inhomogeneous in the magnet cross-section

QH-induced voltage distribution

The voltage distribution in the QH strips just after triggering varies linearly along the conductor length, but is homogeneous in the cross-section

Coil to heater voltage optimization

• CLIQ and QH are triggered simultaneously. It is important to choose a QH connection scheme that compensates the voltages induced by CLIQ and QH

Simulated temperature profiles

Minimum QH energy density to quench

LARP

Measured and simulated heater delays *LARP* – Outer layer

Measured and simulated heater delays – Inner layer

200

MQXFS01 stainless-steel only IL heaters not yet tested

Measured and simulated heater delays – Outer and inner layers

Energy extraction decays (no heaters) LARP

Energy extraction decays (no heaters) Quench back and inductance reduction

l₀=8.24 kA R_{FF}=90 mΩ

 L_{diff} ~50% L_{nom} R_{coil} ~5 m Ω \rightarrow The faster decay observed in this discharge is mainly due to a reduction of the inductance, not due to quench-back

Fast kick due to quench heater firing

- Delay of ~3 ms (33 turns) observed (training & beam induced quenches, MD) between quench heater firing and beam dump in LHC main dipoles.
- Field from quench heater rises within 20 30 us.
- Max expected orbit excursions:
 - Main dipoles , 11 T dipole: ~ 0.13 σ
 - HL-LHC triplet (OL + IL): ~ 0.5 σ → ~150 um (@ 7 TeV); ~ 6 mm (@ 450 GeV)
- Minimize skew dipole fields from quench heaters.
- Ensure, that beams are dumped before quench heater fire.

