

MQXF status and plans

Paolo Ferracin and Giorgio Ambrosio on behalf of the MQXF collaboration

6th HL-LHC Collaboration Meeting 14-16 November 2016 Paris

Acknowledgments

CERN

- A. Ballarino, H. Bajas, M. Bajko, B. Bordini, J.C. Perez, S. Izquierdo Bermudez, P. Fessia, C. Fichera, P. Grosclaude, M. Guinchard, P. Hagen, F. Lackner, H. Prin, E. Rochepault, S. Sequeira Tavares, E. Todesco, G. Vallone
- BNL
 - M. Anerella, A. Ghosh, J. Muratore, J. Schmalzle, P. Wanderer
- FNAL
 - G. Ambrosio, R. Bossert, G. Chlachidze, L. Cooley, E. Holik, S. Krave, F. Nobrega, I. Novitsky, S. Stoynev, T. Strauss, M. Yu,
- LBNL
 - D. Cheng, D.R. Dietderich, R. Hafalia, M. Marchevsky, H. Pan, I. Pong, E. Ravaioli, G. Sabbi, X. Wang
- CEA Saclay
 - H. Felice
- LASA
 - V. Marinozzi, M. Sorbi
- Tampere University of Technology
 - T. Salmi

Outline

- Short model program
- LARP prototype program
- CERN prototype program

Short model program Coil fabrication

- 1st generation coils: **13**
 - CERN: 7
 - 1 Cu and 1 low-grade
 - 3 RRP 132/169 and 2 PIT
 - LARP: 6
 - All RRP 108/127
- Available for test: 9
- 1 tested in MQXFSM1
 - Coil 2
- 4 tested in MQXFS1
 - 103,104,3,5
- 4 to be tested in MQXFS2
 - 102 (splice issue)
 - 201-202 (low J_c and RRR)
 - Coil 6

Short model program Coil fabrication

- 2st generation coils: 17 planned
 - CERN: 11
 - RRP: 3, 132/169 and 1, 108/127
 - PIT 5 (no barrier) and 2 (barrier)
 - LARP: 6
 - RRP 3, 132/169 + 2, 144/169 +1, 108/127
- **Proposal**: 2 LARP coils fabricated by CERN with LARP components
- Available for test: 17
- 4 tested in MQXFS3
 - 105,106,107,7
- 4 to be tested in MQXFS5
 - 203,204,205,206
- 4 to be tested in MQXFS4
 - 9,108,109,110
- 4 to be tested in MQXFS6
 - 207,208,209,8

Short model program Coil fabrication

- Summary
 - 22 coils fabricated from early 2014
 - 14 by CERN
 - 8 by LARP
 - 8 coils to be fabricated by end of 2017
 - 6 by CERN
 - 2 by LARP
 - Total
 - 30 coils

MQXFSM1

- Tested at FNAL in May 2015
- Coil **2**
- Successfully demonstrated coil & parts design, and coil fabrication process

Giorgio Ambrosio and Paolo Ferracin

MQXFS1a

LARP

- Tested at FNAL in April 2016 with coils 3,5,103,104
- Demonstrated temperature margin and excellent memory
- Exceeded ultimate current
- Quenches distributed on the pole turn
 - Training was stopped to increase azimuthal preload

Giorgio Ambrosio and Paolo Ferracin

MQXFS1b

LARP

- Re-loaded at LBNL in summer 2016
- Azimuthal coil pre-load increased by 20 MPa
 - From 80 to 100 MPa
- Shift of pole strain plateau
- Axial pre-load unchanged, still ½ of e.m. force (1.2 MN)
 - Same approach in HQ (but with 0.8 MN)

MQXFS1b

- Again, good memory
- Stably above ultimate
 - Only 1 quench below
- 87% of I_{ss} at 1.9 K
- 95% of I_{ss} at 4.5 K
- Slower training than MQXFS1a
- Quenches in the ends

• MQXFS3

- Tested at CERN in October 2016 with coils 105,106,107,7
- Same azimuthal pre-load as MQXFS1b
- Similar axial pre-load as MQXFS1b
 - 1/2 of e.m. force (1.2 MN)

MQXFS3

- At nominal in 7 quenches
- Training mainly in the ends and coil 105
- Detraining after quench 19 and plateau in coil 7
- Full recovery after high ramp-rate quenches

• 81% of I_{ss} at 1.9 K and about 89% of I_{ss} at 4.5 K

Giorgio Ambrosio and Paolo Ferracin

• MQXFS1b vs. MQXFS3

- Very similar axial and azimuthal pre-load
 - wrt MQXFS1, same axial, +20 MPa azimuthal
- Similar training slope
 - Although at different current level
 - ...but 1b not virgin
 - Slower than MQXFS1a
- Similar quench
 locations

LARP

• End region, I3I4 segment

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 Training quench #

Power i

Short model program Plans for MQXFS1 and MQXFS3 (I)

- Analysis in progress
 - More detailed analysis with **quench antenna** in MQXFS1b
 - Adjusted quench antenna to pinpoint quench locations
 - Comparison of HQ03 and MQXF pre-loading levels
 - Strain gauges measurements
 - Pole strain plateau levels
 - Finite element model
 - Ratio between axial load and e.m. forces
 - Contact pressure between coil and end parts
 - Model of the LE
 - Check for differences between MQXFS1a/1b/3a

Short model program Plans for MQXFS1 and MQXFS3 (II)

MQXFS3b

- Retest with axial pre-load increased
 - Pre-load increased by about a factor two at cold last Friday
 - No need of disassembly
- Insertion of a new quench antenna with 40 mm long coils
- Test expected in December 2016

Short model program Plans for MQXFS1 and MQXFS3 (III)

MQXFS3c

- Full disassembly and coil visual inspection
- Reassembly and re-loading with higher azimuthal pre-stress
 - Depending on 3b test and visual inspection
- MQXFS1c (currently stainless steel shell test)
 - Increase of axial pre-load under consideration

Short model program Upcoming tests (I)

MQXFS5

- Test of four PIT coils (203,204,205,206) with 2nd generation cable design
 - Strand without bundle barrier

MQXFS3d

Stainless steel shells test

Short model program Upcoming tests (II)

MQXFS2

- Test of 3 non conform 1st generation coils
 - 102 (RRP, splice issue), 201-203 (PIT, low J_c and RRR)
 - Together with coil 6

MQXFS6

- Test of PIT strand with bundle barrier (208,209)
 - Together 207 (PIT no barrier) and 108 (RRP)

Short model program Upcoming tests (III)

MQXFS4

- Second RRP 2nd generation magnet, as S3
 - Reproducibility
- Test of pole/mid-plane shims to correct allowed harmonics
- 1st test of laminated structure by LARP

Short model program Summary

MQXFS1

- LARP 3: 108/127, first generation cable
- LARP 5: 108/127, first generation cable
- CERN 103: 132/169, first generation cable
- CERN 104: 132/169, first generation cable

• MQXFS2

- LARP 6: 108/127, first generation cable
- CERN 102: 132/169, first generation cable
- CERN 201: PIT 192, first generation cable
- CERN 202: PIT 192, first generation cable

MQXFS3

- LARP 7: 108/127, second generation cable
- CERN 105: 132/169, second generation cable
- CERN 106: 132/169, second generation cable
- CERN 107: 132/169, second generation cable

• MQXFS4

- LARP 9: 144/169, second generation cable, with shift for field quality adjustment
- CERN 108: RRP 108/127, second generation cable, with shift for field quality adjustment
- CERN 109: 132/169, second generation cable, with shift for field quality adjustment
- CERN 110: 132/169, second generation cable, with shift for field quality adjustment
- MQXFS5
 - CERN 203: PIT 192, second generation cable
 - CERN 204: PIT 192, second generation cable
 - CERN 205: PIT 192, second generation cable
 - CERN 206: PIT 192, second generation cable

MQXFS6

- CERN 207: PIT 192, second generation cable
- CERN 208: PIT 192 (with barrier), second generation cable
- CERN 209: PIT 192, (with barrier) second generation cable
- LARP 8: 144/169, second generation cable

Short model program Plan for tests

- Test schedule defined relying on
 - CERN CLUSTER D station available in 2017 for MQXFS by ~Feb.
 - FNAL test facility (MQXFS4)
- Also, 3.5 structures available and 2 trained teams for assembly and loading

Short model program Field quality

- Good prediction of effect of corrective strategies
 - Magnetic shims
 - Coil shims during coil pack assembly to compensate for coil size differences
- Saturation effect well reproduced
- Still, field errors mainly due to differences in **coil size**
 - To be pointed out: MQXFS5 is the only model with 4 coils with the same strand, cable, parts, and fabricated in the same lab

Short model program Quench protection

- MQXFS1 tests confirmed strategy and validated outer layer heater simulations
 - Very good agreement with outer Layer heaters data
 - Inner layer delays are longer than in simulations

• MQXFS3

- Outer layer heaters perform as expected.
- Two inner layer heater strips were lost. Investigations needed to understand the source of the problems.
- Quench integral studies indicate that the heaters effectively quench the magnet.
- CLIC test in progress in MQXFS1b

- Short model program
- LARP prototype program
- CERN prototype program

LARP prototype program Coil fabrication

- Coils for practice & mirror: 2 coil, 4-m long, completed
 - Coil 01 for mirror (1st generation cable)
 - Coil 01b practice (1st generation cable)
- Coils for MQXFA1: 4 coils, 4-m long, ~completed
 - Coil 02 (1st generation cable)
 - Coil 03,04,05 (2nd generation cable)
- 12 Coils for MQXFA2-3 & for practice of BNL W&C line (4.2 m long)
 - 9 W&C at FNAL
 - 6 R&I at FNAL
 - 3 R&I at BNL
 - 3 W&C, R&I at BNL

LARP prototype program Coil fabrication

LARP prototype program Coil test

MQXFPM1

- Vertical Test Facility @ BNL commissioned in September-October 2016
- Test results at 1.9 K
 - First quench: 14387 A, 65% of *I*_{ss} (22.1 kA)
 - Outer layer mid-plane block
 - Second quench: 16040 A, 73% of *I*_{ss}
 - Inner layer pole turn straight section
- Replacement of IGBT blown at discharge of quench 2 in progress
- Training resuming this week

LARP prototype program Prototype plans

- MQXFA1 (4 m long)
 - Test in summer 2017 with coils 02,03,04,05
- MQXFA2 (4.2 m long)
 - Test in early 2018
- MQXFA3 (4.2 m long)
 - Test in early 2019

LARP

• Prototype cold mass: end of 2019, early 2020

LARP prototype program Support structure

- MQXFA1 structure
 - All parts by early December, mech. model in January
- MQXFA2 structure
 - Procurement cycle has started.

MQXFA3 structure

- Under discussion: procurement of thin laminations
 - possibly provided by CERN (exchange with other parts)
- In the meantime, practice with MQXFS4

Outline

- Short model program
- LARP prototype program
- CERN prototype program

CERN prototype program Coil fabrication

- 2 coils with Cu cable and 1 with low grade Nb₃Sn wound and cured
 - 4th coil with low grade Nb₃Sn being wound
- 1 Cu coil reacted
 - 10 m long oven site acceptance test passed
- 1 Cu coil being prep for impregnation
- Then, 6 RRP and 6 PIT coils to be produced

CERN prototype program Coil fabrication

CERN prototype program Prototype plans

MQXFB mechanical test

 Cool-down of cold-mass with practice coils by end 2017

MQXFB1

- Test by end 2018
- MQXFB2
 - Test in mid 2019

CERN prototype program Prototype plans

- Support structure for MQXFB mechanical test and MQXFB1 expected by March 2017
- Material for components for MQXFB2 procured

Additional items addressed since last CM (I)

Stainless steel shell

- Further finite element analysis
- General agreement to set as a tension target after welding 50 ± 50 MPa

- Connection box and powering scheme
 - Two different connection box designs but same coil sequence
 - eP1i-iP4e-iP2e-eP3i

Additional items addressed since last CM (II)

Voltage withstand levels

• Agreement on the values to be met for the acceptance of a MQXF cold mass

By F. Rodriguez Mateos

Circuit Element	Expected Vmax [V]	V hi-pot	I hi-pot [µA]	Minimum time duration [s]
Coil to Ground at RT *	n.a.	3 kV	10	30
Coil to Quench Heater at RT *	n.a.	3 kV	10	30
Coil to Ground at cold **	520	1.5 kV	10	30
Coil to Quench Heater at cold **	900	2.3 kV	10	30

* Room Temperature conditions refer to air at 20±3 °C and relative humidity lower than 60%

** Cold conditions refer to nominal cryogenic conditions (superfluid helium)

And finally, series production

Appendix

Schedule Q2 series

Coil fabrication

- 75-80 days per coil
- 1 coil every 3 weeks (winding 3 weeks, reaction 3 weeks)
- 50 coils fabricated in 4 years

Cryo-assemblies

LARP

- About 1 year from coil-pack assembly to "ready for installation"
- 3 cryo-assemblies per year
 - Imposed by time required to fabricate 5 coils
- 10 cryo-assemblies fabricated in 4.5 years

