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Why Broken CFT’s 
are Interesting 


  pure CFT is equivalent to RS2


  IR brane at TeV turns RS2 into RS1


  IR brane is one type of scale breaking


  other IR cutoffs will lead to new

  LHC phenomenology




approach the SM in two limits:         or

QC Higgs Model

minimal parameterization requires 

two mass scales: pole and cut threshold

� ! 1 µ ! 1
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Effective Action
S = �V [H†H] +

Z
d4p
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H

S = �V [H†H] +

Z
d4xd4y H†(x)F (x� y)H(y)
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F (x� y)⇥ F (x� y)W (x, y)

Minimal Gauge Coupling

W (x, y) = P exp
�
�igT a

⇤ y

x
Aa

µdwµ

⇥

...

cf Mandelstam Ann Phys 19 (1962) 1



Gauge Vertex
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2p · q + q2
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Higher Dimension Operator in AdS

of AdS determines the spectrum - whether there is a discretum or a continuum, and the detailed

shape of the spectral density.

Via the AdS/CFT correspondence, this action, with a constant background field � = m2 and

neglecting Lint, encodes the physics of a large-N 4D strongly coupled CFT with scalar operators

with scaling dimensions given by

� = 2±
p

4 + m2R2 . (22)

The 5D gauge fields correspond to the global symmetries of the approximate CFT. At a minimum,

it must contain the global symmetries that are gauged in the SM, and phenomenological viability

typically forces invariance under custodial SU(2)L⇥ SU(2)R. Since we are interested in fields with

dimensions � < 2, we need to choose boundary conditions that project out the solution with larger

root in Eq. (22).

By integrating over the bulk, and using the solutions of the bulk equation of motion, we obtain a

4D boundary e↵ective theory for H. With the appropriate background field �(z) we can reproduce

Eq. (13). Di↵erent background fields will yield di↵erent spectral densities and di↵erent e↵ective

actions. To obtain the appropriate Higgs VEV a bulk potential V (H) must be included in Lint, and

other operators are allowed as well. Once the two-point function is known then gauge invariance

fixes the gauge interactions required by minimal coupling, i.e. the gauge interactions that saturate

the Ward-Takahashi identities. To obtain more general gauge form factors we can include gauge

invariant, higher dimension operators in Lint. For example if we include a higher dimension bulk

operator that couples two gauge field strengths to

H†F a
↵�F b↵�H (23)

then we will have the corresponding 4D interaction in the 1PI e↵ective action (a.k.a the boundary

e↵ective theory)

W � �(2⇡)4�4(p1 + p2 + p3 + p4)g
2c F ab

V V hh(pi; µ)Tr
⇥
F a

↵�(p1)F
b↵�(p2)

⇤
H†(p3)H(p4) . (24)

In the limit pi � µ, the form-factor F ab
V V hh(pi; µ) must become conformally invariant, and hence a

falling function of momentum. Also the coupling should vanish as µ ! 0. Setting one Higgs field

to its VEV (p = 0) yields an e↵ective 4D vertex with two gauge bosons and one Higss, that is a

form factor F ab
V V h(pi; µ) which can contribute to Vector Boson Fusion, (4). In a soft wall AdS model

with a conformally flat metric, taking zero-mode gauge bosons and with the boundary of AdS5 at

z = R, one finds that the e↵ective 4D vertex is

M = {T a, T b}
⇣
g↵�p1 · p2 � p�

1p
↵
2

⌘
F ab

V V h , (25)
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Figure 1: Form-factor for a higher dimension gauge coupling, F ab
V V h(pi; µ) in Eq. (26), as a function

of the Higgs four-momentum, for µ = 400, � = 1.5 (solid) and � = 1.1 (dashed) .

where

F ab
V V h / ṽ�g2

5

Z 1

R

dz z3 K2��(
p

µ2 � (p1 + p2)2 z)K2��(µ z)

K2��(
p

µ2 � (p1 + p2)2 R)K2��(µ R)
, (26)

which vanishes when p↵
1 or p�

2 are contracted into it. Some examples are shown in Fig. 1, as expected

the form-factor drops for p� µ.

Another example of the type of form-factor that can arise can be found in a generalized AdS

model with a bulk quartic interaction, which yield a cubic 4D interaction after setting one Higgs

fields to its VEV. With this setup one finds that the three Higgs amplitude is

Fhhh / ṽ�

Z 1

R

dz z3 K2��(
p

µ2 � p2
1 z)K2��(

p
µ2 � p2

2 z)K2��(
p

µ2 � p2
3 z)K2��(µ z)

K2��(
p

µ2 � p2
1 R)K2��(

p
µ2 � p2

2 R)K2��(
p

µ2 � p2
3 R)K2��(µ R)

, (27)

An example is shown in Fig. 2.

In both these examples we see that at low momentum the form factor is almost constant and

then peaks for momenta around µ. It would be very ine�cient to describe the form factor by

introducing higher dimension operators.

Appendix A

For the trilinear interaction H†(p + q)Aa
µ(q)H(p)�µ,a(p, q) in momentum space, one finds:

�⌫,a(p, q; µ) = gT a (2p⌫ + q⌫) �(p, q; µ) , (28)
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LHC Experiment
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LHC Experiment

mh2=500 GeV, ΓH2=100 GeV
SM

μ=800 GeV, Δ=1.5
μ=600 GeV, Δ=1.5
μ=400 GeV, Δ=1.5

200 400 600 800 1000 1200 1400

10

100

1000

104

mZZ (GeV)

Ev
en
ts

/1
0
G
eV

gg→ZZ 300 fb-1(14 TeV)

Bellazzini, Csáki, Hubisz, Lee, Serra, JT

hep-ph/1511.08218



Future Sensitivity

Ali Shayegan
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Conclusions
The Electroweak Phase Transition is 

close to a Quantum Critical Point


 


The LHC can test whether the Higgs 

has a non-trivial critical exponent
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Double Higgs Production

Bellazzini, Csáki, Hubisz, Lee, Serra, JT
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Figure 4: The trajectories in the ∆S − ∆T plane for constant Unhiggs parameters ν, µ, R
and varying muh. For a given µ and ν, the UV scale Λ = 1/R is set to the maximum value
allowed by perturbativity (or to the Planck scale, if the former is larger). Different points
correspond to varying the Unhiggs mass muh in the range [50, 1000] GeV (red circles, from
left to right, in steps of hundred except for the first step). For reference, in each case we
plotted the trajectory in the SM when mh is varied in the range [50, 1000] GeV (solid black).

We conclude that the electroweak precision observables are consistent with the Unhiggs with
a mass gap of order 100 GeV, irrespectively of whether there is an isolated pole below the
continuum or not.

What about the direct searches at LEP? When the Unhiggs spectral function has a pole
well below the continuum (as is the case when muh

<
∼ µ), that pole behaves much like the

SM Higgs and the 115 GeV lower limit from LEP does apply. That is because in that case
the effective Unhiggs propagators reduce to the SM Higgs propagator for p2 ≪ µ2 (including
p2 ∼ m2

uh, where the resonance is located). If, on the other hand, there is no isolated pole,
then the physical properties of the Unhiggs are vastly different and the LEP limits have to
be reconsidered.

In the SM, the cross section for the Higgs production in the Higgsstrahlung process is
proportional to

σSM(E) ∼
∫

dĒfσ(E − Ē)
mhΓh(Ē2)

(Ē2 − m2
h)

2 + m2
hΓh(Ē2)2

. (14)

Here, fσ is a Gaussian distribution of width σ, which naively accounts for experimental
uncertainties (we take σ = 10 GeV). Next, E is the center-of-mass energy of the emitted
Higgs boson, and Γh is the Higgs width. We focus here on the energies accesible at LEP,
E ∼ 100 GeV, in which case the latter is in practice the width of the H → bb̄ decay. For the

9

Precision Measurements

Falkowski & Perez-Victoria, hep-ph/0901.3777
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QC Higgs and MW
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GB mixing 
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Gauge invariance is maintained

�

⇧ab↵�(q) = �g2hH†iT aT bhHi q
↵q�

q4

⇥
h�
µ2 � q2

�2�� � �
µ2

�2��
i2

GGB(q)

GGB(q) = � i

(µ2 � q2 � i✏)2�� � µ4�2�



WW Scattering

QC Higgs exchange is insufficient 
to unitarize WW scattering

at large s

Mh = �i
g4

4M2
W (2��)µ2�2�

(�s)2��



WW Scattering

QC Higgs 6 point vertex does 
unitarize WW scattering

Stancato JT, hep-ph/0807.3961

Mhh = �i
g2

4M2
W
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unparticle propagator
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Soft-Wall

Karch, Katz, Son, Stephanov hep-ph/0602229

Gherghetta, Batell hep-th/0801.4383

Soft wall
Karch, Katz, Son, Stephanov ’06

z

!

• Dilaton provides a
smooth cuto� to spacetime

S =
�

d4xdz
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�ge��L

• Simplest model:

gMN = z�2�MN

�(z) = z2

• Regge trajectories:

m2
n,S ⇥ (n + S)

CAQCD08 5/17/08 6

dilaton
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Quantum Critical Higgs 
Model
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QC Higgs Model
L = �H† ⇥D2 + µ2

⇤2�� H+ µ4�2�H†H� V (|H|)
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F

 ̄LH R + h.c

minimal parameterization requires 

two mass scales: pole and cut threshold
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QC Higgs Model
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