CMS Searches for Exotic Decays of the H(125)

Rachel Yohay Florida State University Aspen 2017 Winter Conference: From the LHC to Dark Matter and Beyond March 20, 2017

Room for new physics

- At 95% CL, up to 34% allowed branching ratio to as-yetunseen decays
- Direct searches for Higgs decays to exotics are a clear window onto new physics
 - Utilizes one important constraint: the Higgs exists!
 - Complementarity to Standard Model (SM) Higgs measurements
 - Many well motivated theories of new physics predict complex Higgs sectors

Motivation for new physics

$$\Delta m_H^2 = \frac{1}{16\pi^2} \mathbf{X} - |\lambda_f|^2 \Lambda_{\rm UV}^2 + \dots$$

- Hierarchy problem
- Dark matter
- Baryon/anti-baryon asymmetry

Motivation for exotic Higgs decays

CMS 1851

- Anything that adds a gauge singlet to the SM
 - Hidden valley
 - Higgs portal
 - Little Higgs
 - Next-to-minimal supersymmetric standard model (NMSSM)
- All address the tensions in the SM in some way
- All predict new light particles, potentially long-lived, that couple to the 125 GeV Higgs

Exotic decays take many forms

- $H \rightarrow \mu \tau$ (<u>CMS Run 2</u>, <u>CMS Run 1</u>); $H \rightarrow e\tau$, $H \rightarrow e\mu$ (<u>CMS Run 1</u>); $H \rightarrow e\tau$, $H \rightarrow \mu \tau$ (<u>ATLAS Run 1</u>)
- $H \rightarrow \Phi \gamma$ (<u>ATLAS Run 2</u>); $H \rightarrow J/\psi \gamma$, $H \rightarrow \Upsilon(nS)\gamma$ (<u>ATLAS Run 1</u>); $H \rightarrow J/\psi \gamma$ (<u>CMS Run 1</u>)
- $H \rightarrow ZZ_d, H \rightarrow Z_dZ_d$ (<u>ATLAS Run 1</u>)
- Related: direct production of light pseudoscalar (CMS Run 1) ($\underline{a \rightarrow \mu \mu +}$ 2b, $\underline{a \rightarrow \tau \tau + 2b}$, SUSY cascade to $\underline{a \rightarrow bb}$)
- Today's focus
 - $H \rightarrow aa \rightarrow 4f$, predicted by the NMSSM
 - H→invisible, predicted by Higgs portal models

Two-Higgs-doublet models

- Searches can be interpreted in terms of the four types of models
- Simple relations exist among the branching ratios to muons, taus, and bottoms

$$\frac{\Gamma(a \to \mu^+ \mu^-)}{\Gamma(a \to \tau^+ \tau^-)} = \frac{m_\mu^2 \sqrt{1 - (2m_\mu/m_a)^2}}{m_\tau^2 \sqrt{1 - (2m_\tau/m_a)^2}}$$

$$\frac{\Gamma(a \to \mu^+ \mu^-)}{\Gamma(a \to b\bar{b})} = \frac{m_{\mu}^2 \sqrt{1 - (2m_{\mu}/m_a)^2}}{3m_b^2 \sqrt{1 - (2m_b/m_a)^2} (1 + \text{QCD corrections})}$$

$H \rightarrow$ aa at the LHC

- Rich phenomenology
 - Boosted or resolved fermions depending on pseudoscalar mass
 - Pairs of muons, taus, or bottoms in the final state
 - Utilize 2- and 4-body mass reconstruction to discriminate against background
- Advantages over direct a production
 - H→aa provides a striking signature of new physics
 - a→bb and a→ττ reconstruction possible

 $H \rightarrow aa \rightarrow 4T$

- Reconstruction of two well separated boosted $a \rightarrow \tau_{\mu} \tau_{1-prong}$ decays
 - Leading muon $p_T > 17$ GeV, sub-leading muon $p_T > 10$ GeV
 - Same-sign muons to reject Drell-Yan
 - 1-prong track required to be prompt with $p_T > 2.5 \text{ GeV}$
- Search for excess in the 2D di-tau visible mass distribution

T_µT₁-prong

 bb background modeled as a convolution of 1D distributions in events with one non-isolated di-tau pair

Run 1 8 TeV 19.7 fb-1

• W and tt background modeled from muon + non-isolated di-tau sample

Run 1 8 TeV 19.7 fb-1

ΤμΤΧ

$H \rightarrow aa \rightarrow 2\mu 2b$

Run 1 8 TeV 19.7 fb-1

R. Yohay

- Resolved pseudoscalar decay products
- Di-muon mass spectrum fit for a peaked signal to extract m_a
- Selection
 - Two opposite-charge muons with reconstructed $p_T>24$ and 9 GeV (single- and di-muon triggers)
 - Two b jets with $p_T > 15$ GeV, distinguished from light quark jets by the presence of secondary vertices
 - Compatible with zero ME_T

$H \rightarrow aa \rightarrow 2\mu 2\tau$

CMS 1851

- 17/8 GeV di-muon trigger
- Fit to 2D di-muon invariant mass spectrum
- Boosted isolated di-muon reconstruction
- bb background (mostly double semileptonic decays and resonances) estimated from 3-muon events
 - 2D background from 2 × 1-D convolution
 - Fit to analytic function
 - 2 shapes needed depending on which muons fire the trigger

R. Yohay

2HDM+S interpretation

CMS 1851

2HDM+S interpretation

2HDM+S interpretation

$H \rightarrow invisible$ at the LHC

Analysis	Final state	Int. \mathcal{L} (fb $^{-1}$)			Expected signal composition (%)				
		7 TeV	8 TeV	13 TeV	7 or 8 TeV	13 TeV			
qqH-tagged	VBF jets		19.2 [16]	2.3	7.8 (ggH), 92.2 (qqH) 9.1 (ggH), 90.9 (qq				
VH-tagged	$Z(\ell^+\ell^-)$	4.9 [16]	19.7 [16]	2.3	100 (ZH)				
	$Z(b\bar{b})$		18.9 [16]		100 (ZH)				
	V(jj)	—	19.7 [60]	2.3	25.1 (ggH), 5.1 (qqH),	38.7 (ggH), 7.1 (qqH),			
					23.0 (ZH), 46.8 (WH)	21.3 (ZH), 32.9 (WH)			
agH taggod	Monoiot		19.7 [60]	2.3	70.4 (ggH), 20.4 (qqH),	69.3 (ggH), 21.9 (qqH),			
ggii-taggeu	Monojet				3.5 (ZH), 5.7 (WH)	4.2 (ZH), 4.6 (WH)			

- VBF and ZH modes provide good S/B discrimination
- Additional sensitivity from large cross section ggH mode when accompanied by a jet
- Characteristic signature of large ME_{T} recoiling against jets or leptons

Run 1 7 TeV 5.1 fb⁻¹ Run 1 8 TeV 19.7 fb⁻¹ Run 2 13 TeV 2.3 fb⁻¹

Additional ZH modes

VBF $H \rightarrow$ invisible

- Forward jet + ME_T trigger
- Tighter offline requirements + lepton veto
- Main Z→vv, W→lv (lost lepton), and QCD backgrounds estimated from data
 - Simultaneous fit of $Z \rightarrow \mu\mu$, $W \rightarrow I\nu$, and low min $\Delta\Phi(ME_T, j)$ control regions to extract W + Zand QCD scale factors to signal region
 - Ratio of W→Iv to Z→vv taken from LO simulation

Run 2 13 TeV 2.3 fb⁻¹

R. Yohay

JHEP 02 (2017) 135	8 TeV	13 TeV
$p_{\mathrm{T}}^{\mathbf{j}_{1}}$	>50 GeV	>80 GeV
$p_{\mathrm{T}}^{\mathrm{j}_2}$	$>45\mathrm{GeV}$	>70 GeV
m_{ii}	>1200 GeV	>1100 GeV
$E_{\rm T}^{\rm miss}$	>90 GeV	>200 GeV
$S(E_{\rm T}^{\rm miss})$	$>4\sqrt{\text{GeV}}$	
$\min \Delta \phi(\vec{p}_{T}^{miss}, j)$	>	2.3
$\Delta \eta(\mathbf{j}_1,\mathbf{j}_2)$	>:	3.6
JHEP 02 (2017) 135 2.3 fb ⁻¹	(13 TeV) JHEP 02 (20	17) 135 2.3 fb ⁻¹ (13 Te

$Z(\rightarrow II)H\rightarrow invisible$

R. Yohay

JHEP 02 (2017) 135	7 and 8 TeV	13 TeV	
$p_{\mathrm{T}}^{\mathrm{e},\mu}$	>20	GeV	
$m_{\ell\ell}$	76–106	6 GeV	
$\Delta \phi(\ell,\ell)$		$<\pi/2$	
$E_{\mathrm{T}}^{\mathrm{miss}}$	>120 GeV	>100 GeV	
$\Delta \phi(\ell \ell, ec{p}_{ m T}^{ m miss})$	>2.7	>2.8	
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j)$		>0.5	
$ E_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}^{\ell\ell} / p_{\mathrm{T}}^{\ell\ell}$	< 0.25	< 0.4	
m_{T}	>200 GeV		

- Di-muon (17 and 8 GeV) and di-electron (17 and 12 GeV) triggers
- m_T(di-lepton system, ME_T) exploited to reduce Z + jets background
- $\Delta \Phi(I,I) < \pi/2$ to reduce SM Z production
- Veto on >1 jet with $p_T > 30 \text{ GeV}$
- ZZ and WZ backgrounds from MC, Z + jets from γ + jets in data, non-resonant backgrounds from opposite-flavor pairs

$V(\rightarrow jj)H\rightarrow invisible and monojet$

- + ME_T and H_T triggers
- Lepton, photon, and b veto
- Fat jet reconstruction of V→jj
- Z→vv and W→lv estimated from di-lepton, single lepton, and γ + jet data control regions, similar to the VBF analysis
- Other backgrounds from simulation

	8 Te	eV	13 TeV			
JHEP 02 (2017) 135	V(jj)	Monojet	V(jj)	Monojet		
$p_{\mathrm{T}}^{\mathrm{j}}$	>200 GeV	>150 GeV	>250 GeV	>100 GeV		
$ \eta ^{j}$	<	2	<2.4	<2.5		
$E_{\mathrm{T}}^{\mathrm{miss}}$	>250 GeV	>200 GeV	>250 GeV	>200 GeV		
τ_2/τ_1	< 0.5		<0.6			
<i>m</i> _{prune}	60–110 GeV		65–105 GeV			
$\min \Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j)$	>2 1	rad	>0.5 rad			
Nj	=	1	_			

Run 2 13 TeV 2.3 fb-1

Aspen 20 March 2017

CMS

SM interpretation

- Robust program of searches for nonstandard Higgs decays at CMS
- Complementarity between coupling measurements and searches
- Detector and reconstruction improvements during Run 2 and the HL-LHC will improve reach
- Many paths to elucidating the nature of the Higgs

Backup

deliver even all' 4 pour i have the

Direct pseudoscalar production

Aspen 20 March 2017

CMS

Direct pseudoscalar production

0.03

- CDF and CMS: $gg \rightarrow a, a \rightarrow \mu\mu$
- $\theta_A = \text{mixing angle between}$ **MSSM** doublet pseudoscalar and NMSSM singlet pseudoscalar

0.02

EPJC 62 (2009) 319

Aspen 20 March 2017

CMS

PRL 109 (2012) 121801

H(125) decay to pseudoscalars

CMS

Low m_T

CMS-PAS-HIG-14-022

R. Yohay

CMS-PAS-HIG-14-022

High m_T

$H \rightarrow aa \rightarrow 2\mu 2b$

- Signal parametrization derived from MC
 - Voigt + Crystal Ball
- Background fit modeled with different analytical functions using the discrete profiling method
 - Polynomials and $1/P_n(x)$ functions up to the degree for which the p-value for compatibility of the function with the data drops below 5%
 - p-value calculation accounts for the number of degrees of freedom in the fit and the parameter uncertainty
 - Functional form is a discrete nuisance parameter and enters the likelihood calculation like all other continuous nuisance parameters
 - Likelihood minimization chooses the best-fit background model

R. Yohay

$H \rightarrow aa \rightarrow 2\mu 2T$

- $3.7 < m_a < 50 \text{ GeV}$
- 36 GeV single- and 18/8 GeV di-muon triggers
- Di-muon pair with p_T > 40 GeV formed from resolved muons
- Boosted di-tau reconstruction
 - Third soft lepton (7 GeV τ_e or τ_μ) with 1, 2, or 3 1-GeV tracks within a $\Delta R = 0.4$ cone
 - Isolated di-tau well separated from di-muon
- SM resonances, tt

 And Drell-Yan backgrounds modeled by analytic
 functions and constrained by fits in f1 control regions

 $H \rightarrow aa \rightarrow 2\mu 2T$

Validation of background modeling

Run 1 8 TeV 20.3 fb-1 boosted

R. Yohay

2HDM+S interpretation

R. Yohay

- + W reconstruction with $20 < m_a < 60 \text{ GeV}$
 - Trigger on isolated 25 GeV electron or muon
 - $m_T > 50 \text{ GeV}$
- Events classified according to number of jets and b tags identified
- BDT discriminator trained on 60 GeV pseudoscalar signal and tt background
- tt backgrounds taken from simulation, with BDT(H_T) discriminant distributions fit to data in the search(control) bins
- Small QCD background from jets faking isolated leptons estimated from data using fake rates

Region		m_{bbb}	m_{bbbb}	$\Delta m^{bb}_{ m min}$	H_{T}	p_{T}^W	ΔR^b_a	$\Delta P_{\rm av}^{bb} = \Delta P$	$R_{\min}^{\ell b}$	m_{bbj}	$m_{ m T2}$
	(3j, 3b)	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark		
Signal	(4j, 3b)	\checkmark			\checkmark	\checkmark	\checkmark			\checkmark	
	(4j, 4b)		\checkmark	\checkmark	\checkmark		\checkmark				\checkmark
Control					\checkmark						
EPJC 76 (2016) 605											
	Systema	tic uncert	ainty [%]	WH, H -	$a \rightarrow 4b$	$t\bar{t}$ +	light	$t\bar{t}+c\bar{c}$	$t\bar{t} + b\bar{b}$		
	Luminos	sity		4			4	4	4		
	Lepton efficiencies		1			1	1	1			
	Jet effici	Jet efficiencies		6			4	4	4		
	Jet energ	Jet energy resolution		5			1	3	1		
	Jet energ	Jet energy scale		4			2	4	3		
	b-tagging	<i>b</i> -tagging efficiency <i>c</i> -tagging efficiency Light-jet-tagging efficiency Theoretical cross sections		17			5	5	9		
	c-tagging			1			6	12	4		
	Light-jet			2			29	5	3		
	Theoreti			_			5	5	5		
	$t\bar{t}$: modelling $t\bar{t}$ +HF: normalisation		—			6	45	26			
			_			_	35	18			
	$t\bar{t}$ +HF: 1	modelling		_				—	5		
	Signal m	odelling		7			_	—	—		
	Total			21	L		31	54	21		

R. Yohay

EPJC 76 (2016) 605

Some BDT variables

R. Yohay

Validation of background modeling

R. Yohay

2HDM+S interpretation

H→invisible

Systematic uncertainty	JHEP 02 (2017) 135	Impact
Common		
Muon efficiency		24%
Electron efficiency		22%
Lepton veto efficiency		16%
b jet tag efficiency		3.2%
$W(\ell\nu)$ +jets/ $Z(\nu\nu)$ +jets ra	tio, theory	16%
γ +jets/Z($\nu\nu$)+jets ratio, t	heory	5.8%
Jet energy scale and resolution	ution	10%
$E_{\rm T}^{\rm miss}$ scale		1.8%
Integrated luminosity		3.0%
Diboson background nor	malisation	2.7%
Top quark background no	ormalisation	<1%
Signal specific		
ggH <i>p</i> _T -spectrum		15%
Renorm. and fact. scales a	and PDF (ggH)	5.8%
Total systematic		+57% -50%
Total statistical only		$^{+25}_{-22}$ %
Total uncertainty		+62 -55 %

SM interpretation

