Searches for New Phenomena with Long-lived Particles at ATLAS

Andy Haas (NYU) on behalf of the ATLAS collaboration

Aspen 2017 Winter Conference "From the LHC to Dark Matter and Beyond"

March 19-25, 2017

https://indico.cern.ch/event/550030/

Introduction

- New particles will either be
 - Prompt decays
 - Semi-stable, decay in detector
 - Detector-stable, decay outside detector (or get stopped in the detector and decay later)
- Must ensure sensitivity to semi-stable and detector-stable cases!

- Focus on these well-motivated scenarios:
 - "Higgs-like decays to LLP" (scalar production)
 - Hidden-valley scenarios
 - "Long-lived gluino" (strong production)
 - Split / mini-split SUSY
 - mH=125 GeV ightarrow 10-104 TeV squarks ightarrow off-shell gluino decay
 - "Long-lived chargino" (weak production)
 - NLSP \rightarrow LSP with small Δm
 - AMSB Wino/Higgsino

Scalar decays to LL neutrals decaying in the H-Cal

- Dedicated $p_{T}=60$ GeV R=0.2 jet cal-ratio trigger
- Specialized cuts against beam-induced muons
- BDT selects signal, based on jet $log(E_H/E_{EM})$, p_T , width, cluster moments, and track variables
- Require 2 cal-ratio jets passing BDT per event
- Multijet background estimated with ABCD

Region	A	В	C	D	Estimated $A = BC/D$
SR: $p_{T,1} > 150$ GeV; $p_{T,2} > 120$ GeV:					
\sum BDT boundary = 0.15	24	16	39	34	18.0 ± 6.3
VR: $p_{T,1} > 140$ GeV; 80 GeV $< p_{T,2} < 1$	20 GeV:				
\sum BDT boundary = 0.2	15	14	84	77	15.3 ± 4.7
\sum BDT boundary = 0.15	42	38	57	53	40 ± 10
\sum BDT boundary = 0.1	72	64	27	27	60 ± 19

ATLAS-CONF-2016-103

88% to $b\bar{b}$, 8% to $c\bar{c}$, and 4% to $\tau^+\tau^-$

Nearly all hadronic energy

Also narrower and trackless...

Higgs-like decays to LL neutrals decaying to lepton-jets

Long-lived, light, dark photon decays back to SM

Specialized HLT trigger based off L1 muons

 Various combinations of EM/had/muon object requirements to reject multijet, cosmics, and beam-muon backgrounds

Category	Observed events	Expected background
All events	285	$231 \pm 12 \text{ (stat)} \pm 62 \text{ (syst)}$
Type2-Type2 excluded	46	$31.8 \pm 3.8 \text{ (stat)} \pm 8.6 \text{ (syst)}$
Type2–Type2 only	239	$241 \pm 41(stat) \pm 65(syst)$

ATLAS-CONF-2016-042

Long-lived gluino searches

Meta-stable heavy charged particles with large dE/dx

- Use dE/dx (ionization left in silicon) to infer particle mass
 - Invert Bethe-Block, knowing momentum of charged track
 - Make use of new IBL layer in Run2 to narrow dE/dx distribution
- No excess, extend Run1 limits

Phys. Rev. D 93, 112015 (2016)

$$(dE/dx)_{MPV}(\beta \gamma) = \frac{p_1}{\beta^{p_3}} ln(1 + [p_2\beta \gamma]^{p_5}) - p_4$$

Heavy slow escaping particle search

- Use good timing resolution of Tile Calorimeter to directly measure speed of isolated tracks
- Does not rely on muon system for this version, in case Rhadron becomes neutral after going through dense material
- Calibrate timing using $Z{\to}\mu\mu$
- Still no excess, limits improve beyond Run1

Going a longer distance improves speed measurement...

Physics Letters B (2016), pp. 647-665

"Late" triggers

- Combine info from *multiple bunch crossings* in ATLAS Run2 trigger
 - Recall, bunch spacing is just 25 ns in Run2 (was 50 ns in Run1)
- Heavy, slow (β <~0.8), charged long-lived particle
 - Too slow to reach muon trigger in bunch 1 (production crossing)
 - Reaches muon trigger in next bunch crossing
 - Would not fire muon trigger by itself
 - Combine with jet/MET in previous bunch crossing

Long-lived chargino searches

- AMSB model (or in mini-split SUSY)
 - Squarks heavy (10-100 TeV), consistent with mH
 - Wino-like LSP, good DM candidate
- Chargino and neutralino nearly degenerate
 - Lifetime of chargino $^{\sim}0.2~\text{ns} \rightarrow ^{\sim}6~\text{cm}$
- Chargino track "disappears" when it decays, into MET
 - Low-momentum (~0.1 GeV) pion track is lost

- Now consider both weak (direct) and strong (gluino) production in Run2
- Challenge to reconstruct short tracks, with decent momentum resolution

- New technique for Run2: <u>pixel-only tracks</u>, using IBL and existing layers!
 - Reconstruct ~10cm tracks, SCT veto, $p_{\tau}>5$ GeV
 - ~10x larger acceptance for 400 GeV AMSB chargino
- Challenge to reject fakes, tracks with poor momentum resolution, and model backgrounds

- MET trigger (>~120 GeV), calibrated in W data
- Lepton veto, remove W's
- Tight requirements on track pointing to PV
- Tight track calorimeter isolation
- Special procedure for modeling track $p_{\scriptscriptstyle T}$ resolution

EW channel

- Leading Jet $p_T > 140 \text{ GeV}$
- $E_T^{missing} > 140 \text{ GeV}$
- $\Delta \phi_{\min} \left(\mathsf{Jet}_{1,2,3,4} \,,\, \mathsf{E}_{\mathsf{T}}^{\mathsf{missing}} \right) > 1.0$

Strong channel

- Leading Jet $p_T > 100 \text{ GeV}$
- $2^{\text{nd}} \text{ Jet p}_{\text{T}} > 50 \text{ GeV}$
- 3rd Jet $p_T > 50 \text{ GeV}$
- $E_{\tau}^{\text{missing}} > 150 \text{ GeV}$
- $\Delta \phi_{min} (\mathsf{Jet}_{1,2,3,4} \,,\, \mathsf{E}_{\mathsf{T}}^{\mathsf{missing}}) > 0.4$

- Main background is W+jets, where e or π scatters
- Random background dominates at very high p_T
- Background types:

No excess seen...

${\text{(high-}E_{\text{T}}^{\text{miss}}, p_{\text{T}} > 100 \text{ GeV})}$	Electroweak channel	Strong channel	
Observed events	9	2	
Expected background	11.5 ± 3.1	2.3 ± 0.5	
Signal	10.4 ± 1.7	4.1 ± 0.5	
CL_b	0.403	0.647	
Observed $\sigma_{ m vis}^{95\%}$ [fb]	0.24	0.12	
Expected $\sigma_{\rm vis}^{95\%}$ [fb]	$0.30^{+0.13}_{-0.14}$	$0.11_{-0.04}^{+1.53}$	

Strong production channel

Starting to attack Higgsino territory...

Weaker than 8 TeV result for long-lifetimes

Summary

- Have started exploiting large Run2 dataset in search of LLP's
- Making use of new detector capabilities as well
 - IBL (new inner pixel layer)
 - Better dE/dx measurement
 - Pixel-only tracks
 - Trigger flexibility at L1 and HLT
- An exciting and busy time ahead for Run2 and Run3 and beyond
- We'll keep working hard, and hope for some surprises!

Backup

Prompt search reinterpretations

- First explicit limits on gluinos with intermediate lifetimes from reinterpretation of prompt SUSY searches
 - 7-10 jets and 0,1,2 b-jets and MET
 - 2-6 jets and MET
 - 3 b-jet and SS/3L searches also considered but don't add sensitivity
- Generated fullly-simulated MC of decaying Rhadrons at ATLAS

Prompt search reinterpretations

• Limits on gluino mass vs. lifetime

ATLAS-CONF-2014-037

- Also scan neutralino mass
- Gluino with lifetime of 1 ns excluded up to ~900 GeV, for $m(x_1^0)=100$ GeV

