The $B \rightarrow D^{(*)} \tau \bar{\nu}$ anomalies: facts and/or fictions

Zoltan Ligeti

Aspen Winter Conference, March 19–25, 2017

F. Bernlochner, ZL, D. Robinson, M Papucci, 1703.05330

M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018 [1506.08896]

F. Bernlochner, ZL, PRD 95 (2017) 014022 [1606.09300]

D. Robinson, ZL, M Papucci, JHEP 1701 (2017) 083 [1610.02045]

+ works in progress ...

Thanks to Csaba, Erez, Jessie, Tomer, Yuri for the invitation

CA snow conditions ten days ago — "under the lamp post"...

Apologies to Jesse, Ben, Wei...

The scale of new physics?

- SM cannot be the full story theoretical prejudices of the 1990s didn't pan out
- Are measures of fine tuning misleading, and NP is order of magnitude heavier?
- New physics at LHC MFV probably useful approximation to its flavor structure $\$ New physics at 10^{1-2} TeV — less strong flavor suppression, MFV less motivated
- Discovering deviations from the SM flavor sector is possible in either case (deviation from SM \rightarrow upper bound on scale)

Flavor anomalies: (subjective) status

- Several measurements are in intriguing tensions with the SM
 Key roles of Δm_K and ε_K remain, to constrain NP
 vs. flood of LHCb data, exploring Higgs flavor, etc.
- Guaranteed to probe and understand the SM much better (e.g., "new" hadronic states)
 Hope of discovering BSM phenomena
- Each could be a whole a talk...

• Exp.: NA62 taking data, by 2019 measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ to < 10% (at SM level) Belle II approaching, time to make genuine predictions is shrinking LHCb 300/fb upgrade planning + improving EDM, CLFV, DM, sensitivities

2/13/2017: LER superconducting final focusing

• $B \to D^{(*)} \tau \bar{\nu}$ is currently the most significant deviation from the SM (at colliders)

1. Use $B \to D^{(*)} l \bar{\nu}$ to refine $B \to D^{(*)} \tau \bar{\nu}$, lattice independent, improvable [F. Bernlochner, ZL, Papucci, Robinson, 1703.05330]

Refine $|V_{cb}|$ determination, test HQET, test lattice, test measurements... [soon]

- 2. MFV models, leptoquarks [M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018, arXiv:1506.08896] Suppress $e \& \mu$ instead of enhancing τ ? [M. Freytsis, ZL, J. Ruderman, to appear]
- **3.** $B \to D^{**} \ell \bar{\nu}$ in the SM and $R(D^{**})$ [F. Bernlochner, ZL, PRD 95 (2017) 014022, arXiv:1606.09300.]
 - $B \to D^{**} \ell \bar{\nu}$ for arbitrary new physics

[soon]

'When you think you can finally forget a topic, it's just about to become important'

The tension with the SM

Reliable SM predictions: heavy quark symmetry + lattice QCD (only D so far)

• Model indep. 2σ tension: $R(D^{(*)})$ vs. $R(X_c) = 0.223 \pm 0.004$ in SM [Freytsis, ZL, Ruderman] No $\mathcal{B}(B \to X\tau\bar{\nu})$ measurement since LEP, $\mathcal{B}(b \to X\tau^+\nu) = (2.41 \pm 0.23)\%$

Imply NP at a fairly low scale (leptoquarks, W', etc.), likely visible at the LHC

- Next: LHCb result with hadronic τ decays, measure R(D), maybe Λ_b decay
- Experimental precision will improve a lot + theory uncertainty also improvable

Refining SM predictions

Can it be a theory issue?

Basics of $B
ightarrow D^{(*)} \ell ar{
u}$

• Only Lorentz invariance: 6 functions of q^2 , only 4 measurable with e, μ final states

$$\langle D | \bar{c}\gamma^{\mu}b | \bar{B} \rangle = f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + \left[f_{0}(q^{2}) - f_{+}(q^{2}) \right] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} q^{\mu}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}b | \bar{B} \rangle = -ig(q^{2}) \epsilon^{\mu\nu\rho\sigma} \varepsilon_{\nu}^{*} (p_{B} + p_{D^{*}})_{\rho} q_{\sigma}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \bar{B} \rangle = \varepsilon^{*\mu}f(q^{2}) + a_{+}(q^{2}) (\varepsilon^{*} \cdot p_{B}) (p_{B} + p_{D^{*}})^{\mu} + a_{-}(q^{2}) (\varepsilon^{*} \cdot p_{B}) q^{\mu}$$
Two form factors involving $q^{\mu} = p_{B}^{\mu} - p_{D^{(*)}}^{\mu}$ do not contribute for $m_{l} = 0$

$$HQET \text{ constraints: } 6 \text{ functions } \Rightarrow 1 \text{ in } m_{c,b} \gg \Lambda_{\rm QCD} \text{ limit } + 3 \text{ at } \mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$$

$$\langle D | \bar{c}\gamma^{\mu}b | \bar{B} \rangle = \sqrt{m_{B}m_{D}} \left[h_{+}(v + v')^{\mu} + h_{-}(v - v')^{\mu} \right] \qquad w = v_{B} \cdot v'_{D^{(*)}}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}b | \bar{B} \rangle = i\sqrt{m_{B}m_{D^{*}}} h_{V} \varepsilon^{\mu\nu\alpha\beta} \epsilon_{\nu}^{*}v'_{\alpha}v_{\beta}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \bar{B} \rangle = \sqrt{m_{B}m_{D^{*}}} \left[h_{A_{1}}(w + 1)\epsilon^{*\mu} - h_{A_{2}}(\epsilon^{*} \cdot v)v^{\mu} - h_{A_{3}}(\epsilon^{*} \cdot v)v'^{\mu} \right]$$

 $m_{c,b} \gg \Lambda_{\text{QCD}}$ limit: $h_+ = h_V = h_{A_1} = h_{A_3} = \xi(w)$ and $h_- = h_{A_2} = 0$

• Constrain all 4 functions from $B \to D^{(*)} l \bar{\nu} \Rightarrow \mathcal{O}(\Lambda_{\text{QCD}}^2/m_{c,b}^2, \alpha_s^2)$ uncertainties

Measured spectra for $e \ensuremath{\,\&\,} \mu$ final states

• 4 functions: two q^2 spectra in $D^{(*)}$ + two q^2 -dependent angular distributions in D^* All form factors = Isgur-Wise function + $\Lambda_{QCD}/m_{c,b} + \alpha_s$ corrections

[BaBar, 0705.4008]

Consider 6 different fit scenarios

- Only R(D) calculated in lattice QCD what are conservative uncertainties? Calculations of subleading $\Lambda_{\text{QCD}}/m_{c,b}$ Isgur-Wise functions are model dependent
- Except LQCD, past calculations of $R(D^{(*)})$ do not include uncertainties properly Both theory and exp papers: $R_{1,2}(w) = \underbrace{R_{1,2}(1)}_{\text{fit}} + \underbrace{R'_{1,2}(1)}_{\text{fixed}}(w-1) + \underbrace{R''_{1,2}(1)}_{\text{fixed}}(w-1)^2/2$

Sometimes calculations using QCD sum rule predictions for $\Lambda_{
m QCD}/m_{c,b}$ corrections are called the HQET predictions

• Our fits:

Ei+	OCDED		Rollo Data		
ГЦ	QUDON	$\mathcal{F}(1)$	$f_{+,0}(1)$	$f_{+,0}(w > 1)$	Delle Dala
$L_{w=1}$	—	+	+	—	+
$L_{w=1}+SR$	+	+	+		+
NoL	—	—		—	+
NoL+SR	+	_	—	—	+
th:L $_{w\geq 1}$ +SR	+	+	+	+	—
$L_{w\geq 1}+SR$	+	+	+	+	+

Experimental inputs and self-consistency

Model-dependent inputs in SM predictions for $R_{1,2}$ in all exp. fits & theory papers

• May affect $|V_{cb}|$ from $B \to D^{(*)} l \bar{\nu}$ — long standing tensions

Our SM predictions for R(D) and $R(D^*)$

• Significance of the tension is stable across our 6 fit scenarios:

E.g., we can use no data at all + LQCD $B \rightarrow D^{(*)} l\bar{\nu}$ + HQET form factor ratios

• Modest variations: heavy quark symmetry & phase space leave little wiggle room

Scenario	R(D)	$R(D^*)$	Correlation
$L_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%
$L_{w=1}{+}SR$	0.291 ± 0.005	0.255 ± 0.003	57%
NoL	0.273 ± 0.016	0.250 ± 0.006	49%
NoL+SR	0.295 ± 0.007	0.255 ± 0.004	43%
th: $L_{w \ge 1} + SR$	0.306 ± 0.005	0.256 ± 0.004	33%
$L_{w\geq 1}+SR$	0.299 ± 0.003	0.257 ± 0.003	44%
Data [HFAG]	0.403 ± 0.047	0.310 ± 0.017	-23%

Tension between our "L_{w≥1}+SR" fit and data is 3.9σ , with *p*-value = 11.5×10^{-5} (close to HFAG: 3.9σ , with *p*-value = 8.3×10^{-5})

New physics possibilities with one operator

• Add only one NP operator to the SM at a time: $O_S - O_P$, $O_S + O_P$, $O_V + O_A$, O_T

- Not all 1/m corrections in literature, some $\mathcal{O}(1/m)$ form factors had 100% uncert.
- Shifts from gray regions non-negligible if one seriously wanted to fit a NP model

New physics options

Consider redundant set of operators

Fits to different fermion orderings convenient to understand allowed mediators

Usually only the first 5 operators considered, related by Fierz

from dim-6 terms, others from dim-8 only $\downarrow\downarrow$

	Operator		Fierz identity	Allowed Current	$\delta \mathcal{L}_{ ext{int}}$
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			$(1,3)_0$	$(g_q ar q_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar \ell_L oldsymbol{ au} \gamma^\mu \ell_L) W'_\mu$
\mathcal{O}_{V_R}	$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			3-1 10-2 1393	
\mathcal{O}_{S_R}	$(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$			(1, 2)	$() = d + () = \cdots = (d + () = d)$
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$			$(1,2)_{1/2}$	$(\lambda_d q_L a_R \phi + \lambda_u q_L u_R i \tau_2 \phi^{\dagger} + \lambda_\ell \epsilon_L e_R \phi)$
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$				
\mathcal{O}'_V	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	Ov. l	$(3,3)_{2/3}$	$\lambdaar{q}_Loldsymbol{ au}\gamma_\mu\ell_Loldsymbol{U}^\mu$
$-v_L$	(, , , , , , , , , , , , , , , , , , ,			$\left(2,1\right)$	$(\lambda \bar{a}_{r} \alpha \ell_{r} + \tilde{\lambda} \bar{d}_{r} \alpha \ell_{r}) II^{\mu}$
\mathcal{O}'_{V_R}	$(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$/^{(3,1)_{2/3}}$	$(\lambda q_L \gamma_\mu \epsilon_L + \lambda a_R \gamma_\mu \epsilon_R) O^{-1}$
\mathcal{O}'_{S_R}	$(\bar{ au}P_Rb)(\bar{c}P_L u)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{V_R}$		
\mathcal{O}_{S_L}'	$(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$	$(3,2)_{7/6}$	$(\lambda ar{u}_R \ell_L + ar{\lambda} ar{q}_L i au_2 e_R) R$
\mathcal{O}_T'	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$	2	
\mathcal{O}_{V_L}''	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-{\cal O}_{V_R}$		
\mathcal{O}_{V_R}''	$(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(\bar{3},2)_{5/3}$	$(\lambda ar{d}_R^c \gamma_\mu \ell_L + ilde{\lambda} ar{q}_L^c \gamma_\mu e_R) V^\mu$
\mathcal{O}_{S_R}''	$(\bar{\tau}P_Rc^c)(\bar{b}^cP_L\nu)$	\longleftrightarrow	$\frac{1}{2}\mathcal{O}_{V_L}\Big\langle$	$(\bar{3},3)_{1/3}$	$\lambdaar{q}_L^c i au_2 oldsymbol{ au} \ell_L oldsymbol{S}$
\mathcal{O}_{S_L}''	$(\bar{\tau}P_Lc^c)(\bar{b}^cP_L\nu)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L}+\frac{1}{8}\mathcal{O}_T$	\rangle $(\bar{3},1)_{1/3}$	$(\lambda \bar{q}_L^c i au_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$
\mathcal{O}_T''	$(\bar{\tau}\sigma^{\mu\nu}P_Lc^c)(\bar{b}^c\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$		[Freytsis, ZL, Ruderman, 1506.08896

Fits to a single operator

• Large coefficients, $\Lambda = 1 \text{ TeV}$ in plots \Rightarrow fairly light mediators (obvious: 20–30% of a tree-level rate)

In HQET limit, we confirmed the "classic" paper

[Goldberger, hep-ph/9902311]

Fits to two operators

The \bigotimes solution are ruled out by the q^2 spectrum

Operator fits \rightarrow **viable MFV models?**

- Good fits for several mediators: scalar, "Higgs-like" $(1,2)_{1/2}$ vector, "W'-like" $(1,3)_0$ "scalar leptoquark" $(\overline{3},1)_{1/3}$ or $(\overline{3},3)_{1/3}$ "vector leptoquark" $(3,1)_{2/3}$ or $(3,3)_{2/3}$
- If there is NP within reach, its flavor structure must be highly non-generic Surprising if only BSM operator had $(\bar{b}c)(\bar{\tau}\nu)$ structure
- Minimal flavor violation (MFV) is probably a useful starting point Global $U(3)_Q \times U(3)_u \times U(3)_d$ flavor sym. broken by $Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}), Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}})$
- Which BSM scenarios can be MFV? [Freytsis, ZL, Ruderman, 1506.08896] Not scalars or vectors, viable leptoquarks: scalar $S(1, 1, \overline{3})$ or vector $U_{\mu}(1, 1, 3)$

Bounds: $b \to s\nu\bar{\nu}$, $D^0 \& K^0$ mixing, $Z \to \tau^+\tau^-$, LHC contact int., $pp \to \tau^+\tau^-$, etc.

How odd scenarios may be viable?

• All papers enhance the au mode compared to the SM

Can one suppress the e and μ modes instead?

[Freytsis, ZL, Ruderman, to appear]

Unique viable option: modify the SM four-fermion operator

Good fit with: $V_{cb}^{(\mathrm{exp})} \sim V_{cb}^{(\mathrm{SM})} \times 0.9$ $V_{ub}^{(\mathrm{exp})} \sim V_{ub}^{(\mathrm{SM})} \times 0.9$

• Many relevant constraints, one of the strongest from ϵ_K

What about $e - \mu$ (non)universality?

• How well is the difference of the e and μ rates constrained?

Parameters	De sample	$D\mu$ sample	combined result
$ ho_D^2$	$1.22 \pm 0.05 \pm 0.10$	$1.10 \pm 0.07 \pm 0.10$	$1.16 \pm 0.04 \pm 0.08$
$\rho_{D^*}^2$	$1.34 \pm 0.05 \pm 0.09$	$1.33 \pm 0.06 \pm 0.09$	$1.33 \pm 0.04 \pm 0.09$
R_1	$1.59 \pm 0.09 \pm 0.15$	$1.53 \pm 0.10 \pm 0.17$	$1.56 \pm 0.07 \pm 0.15$
R_2	$0.67 \pm 0.07 \pm 0.10$	$0.68 \pm 0.08 \pm 0.10$	$0.66 \pm 0.05 \pm 0.09$
$\mathcal{B}(D^0\ell\overline{\nu})(\%)$	$2.38 \pm 0.04 \pm 0.15$	$2.25 \pm 0.04 \pm 0.17$	$2.32 \pm 0.03 \pm 0.13$
$\mathcal{B}(D^{*0}\ell\overline{\nu})(\%)$	$5.50 \pm 0.05 \pm 0.23$	$5.34 \pm 0.06 \pm 0.37$	$5.48 \pm 0.04 \pm 0.22$
χ^2 /n.d.f. (probability)	416/468 (0.96)	488/464 (0.21)	2.0/6 (0.92)

[BaBar, 0809.0828 — similar results in Belle, 1010.5620]

 Γ_1

 Γ_2

 $e^+ \nu_e$ anything

 $\mu^+ \nu_{\mu}$ anything

 $\ell^+ \nu_\ell$ anything

 $\overline{p}e^+\nu_e$ anything

- 10% difference allowed... some wrong statements...
- How much better can difference be constrained better?

Reaching the 1% level on ratio might be possible (but challenging) at Belle II

\sim	٨
mm	- (m)
BERKELEY LAE	

 $(10.86 \pm 0.16)\%$

 $(10.86 \pm 0.16)\%$

 $(10.86 \pm 0.16)\%$

 $< 5.9 imes 10^{-4}$

$$B o D^{**} au ar
u$$

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0^+	2330	270
D_1^*	$\frac{1}{2}^+$	1^+	2427	384
D_1	$\frac{3}{2}^{+}$	1^{+}	2421	34
D_{2}^{*}	$\frac{3}{2}^{+}$	2^{+}	2462	48

Parameter	$\bar{\Lambda}$	$\bar{\Lambda}'$	$\bar{\Lambda}^*$
Value [GeV]	0.40	0.80	0.76

Why bother...?

• $B \to D^{**} \tau \bar{\nu}$: rates to narrow D_1, D_2^* measurable? No predictions

In $B_s \to D_s^{**} \ell \bar{\nu}$ case, all $4 D_s^{**}$ states are narrow \Rightarrow LHCb?

16. 16. 16. 16. 1	R(D) [%]	$R(D^*)$ [%]	Correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D^{**} composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_s yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio f^{D^+}	2.5	0.7	-0.98
Efficiency ratio f^{D^0}	1.8	0.4	0.86
Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
CF double ratio g^+	2.2	2.0	-1.00
CF double ratio g^0	1.7	1.0	-1.00
Efficiency ratio $f_{\rm wc}$	0.0	0.0	0.84
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o'_{\rm NB}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32
	$\begin{array}{c} D^{(*(*))}\ell\nu \mbox{ shapes}\\ D^{**}\mbox{ composition}\\ \mbox{Fake D yield}\\ \mbox{Fake ℓ yield}\\ \mbox{Fake ℓ yield}\\ \mbox{Bast yield}\\ \mbox{Rest yield}\\ \mbox{Efficiency ratio $f^{D^+}\\ \mbox{Efficiency ratio $f^{D^+}\\ \mbox{Efficiency ratio $f^{D^{*0}}\\ \mbox{Efficiency ratio $f^{D^{*0}}\\ \mbox{Efficiency ratio $f^{D^{*0}}\\ \mbox{Efficiency ratio $f^{D^{*0}}\\ \mbox{CF double ratio g^0}\\ \mbox{Efficiency ratio $f^{0}_{\mbox{eff}}$\\ \mbox{CF double ratio g^0}\\ \mbox{Efficiency ratio $f_{\mbox{wc}}$\\ \mbox{M}^2_{\mbox{miss}}\ \mbox{shape}\\ \mbox{o'_{\mbox{NB}}\ \mbox{shape}\\ \mbox{Lepton PID efficiency} \mbox{Total} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

[Belle, 1507.03233]

Some model independent results

• At $w \equiv v \cdot v' = 1$, the $O(\Lambda_{QCD}/m_{c,b})$ matrix element is determined by masses and leading order Isgur-Wise function [Leibovich, Ligeti, Stewart, Wise, hep-ph/9703213, hep-ph/9705467]

Kinematic range: $1 \leq w \lesssim 1.3$ and in the τ case $1 \leq w \lesssim 1.2$

Meson masses:
$$m_{H_{\pm}} = m_Q + \bar{\Lambda}^H - \frac{\lambda_1^H}{2m_Q} \pm \frac{n_{\mp} \lambda_2^H}{2m_Q} + \dots \qquad n_{\pm} = 2J_{\pm} + 1$$

For example:

$$\frac{\langle D_1(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_1}m_B}} = f_{V_1}\epsilon^{*\mu} + (f_{V_2}v^{\mu} + f_{V_3}v'^{\mu})(\epsilon^* \cdot v)$$

$$\sqrt{6} f_{V_1}(w) = (1 - w^2) \tau(w) - 4 \frac{\bar{\Lambda}' - \bar{\Lambda}}{m_c} \tau(w) + \mathcal{O}\left(\frac{w - 1}{m_{c,b}}\right) + \dots$$

• These "known" $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$ terms are numerically very important

• No expressions in the literature for $B \to D^{**} \tau \bar{\nu}$ rates at all — fixing this...

Predictions for spectra

Study all uncertainties, including effects neglected in LLSW

• As for $B \to D^{(*)} \ell \bar{\nu}$, heavy quark symmetry relates the extra form factor in the τ mode to those with e, μ — finalizing the uncertainties

Complementary sensitivities to NP

Complementary sensitivities

[Bernlochner & ZL, 1606.09300]

Different patterns in two blue bands

2HDM just for illustration — explore influence of all possible non-SM operators

Final comments

Conclusions

- $B \to D^{(*)}\tau\bar{\nu}$: amusing if NP shows up in an operator w/o much SM suppression
- SM predictions can be systematically improved with more data
- There are good operator fits, and (somewhat) sensible MFV leptoquark models (Fairly wild scenarios still viable)
- Measurements can improve in the next decade by nearly an order of magnitude (Even if central values change, plenty of room for significant deviations from SM)
- More theory progress to come, will impact measurements and sensitivity to BSM

Bonus slides

BaBar statements from q^2 spectrum results

BaBar studied consistency of rates with 2HDM, and $d\Gamma/dq^2$ with several models

- Found that type-II 2HDM gave nearly as bad fit to the data as the SM
- $d\Gamma/dq^2$ has additional discriminating power (no other distribution measured yet)
- No public info on bin-to-bin correlations, eyeball which solutions are (dis)favored

Survey of MFV model

- Scalars: Need $C_{S_L}/C_{S_R} \sim \mathcal{O}(1)$ Hard to avoid y_c suppression or $\mathcal{O}(1)$ coupling to 1st generation
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet excluded by LHC, simplest charges don't work w/o assumptions If dynamics allows $W'\bar{Q}_L^3 Q_L^3$, but not $W'\bar{Q}_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170]
- Leptoquarks: Viable MFV models exist

Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ vectors: $U_\mu \sim (\mathbf{3}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \mathbf{3}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \mathbf{3})$

• Possibly viable: $S(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail

Both can be electroweak singlets or triplets

- Scalars: Need comparable values of C_{S_L} and C_{S_R}
 - If H^{\pm} flavor singlet, $C_{S_L} \propto y_c$, so cannot fit $R(D^{(*)})$ keeping y_t perturbative
 - If H^{\pm} is charged under flavor (combination of *Y*-s, to couple to quarks & leptons), to generate $C_{S_L} \sim C_{S_R}$, some $\mathcal{O}(1)$ coupling to 1st generation quarks unavoidable Bounds on 4q or $2q2\ell$ operators exclude it
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet w/ W-like couplings: $m_{W'} \gtrsim 1.8 \text{ TeV} \iff 0.2 \sim g^2 |V_{cb}| (1 \text{ TeV}/m_{W'})^2$ Couplings to u, d suppressed for $(\bar{\mathbf{3}}, \mathbf{3}, \mathbf{1})$ and $(\bar{\mathbf{3}}, \mathbf{1}, \mathbf{3})$ under $U(3)_Q \times U(3)_u \times U(3)_d$ $(\bar{\mathbf{3}}, \mathbf{3}, \mathbf{1})$: $b \rightarrow c$ transitions suppressed by y_c , too small $(\bar{\mathbf{3}}, \mathbf{1}, \mathbf{3})$: can fit data if $y_b = \mathcal{O}(1)$, but excluded by tree-level FCNC via W'^0 (If dynamics allows $W'\bar{Q}_L^3 Q_L^3$, but not $W'\bar{Q}_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170])

MFV leptoquarks

• Assign charges under flavor sym.:

[viable MFV LQs: Freytsis, ZL, Ruderman]

 $U(3)_Q \times U(3)_u \times U(3)_d$

• Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ vectors: $U_{\mu} \sim (\mathbf{3}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \mathbf{3}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \mathbf{3})$

 $S(\bar{\mathbf{3}},\mathbf{1},\mathbf{1})$ and $U_{\mu}(\mathbf{3},\mathbf{1},\mathbf{1})$ give large $pp \to \tau^+\tau^-$, excluded by Z' searches

 $S(\mathbf{1}, \mathbf{\overline{3}}, \mathbf{1})$ and $U_{\mu}(\mathbf{1}, \mathbf{3}, \mathbf{1})$ give y_c suppressed $B \to D^{(*)} \tau \overline{\nu}$ contributions \Rightarrow too large couplings, or too light leptoquarks

• Possibly viable: $S(\mathbf{1}, \mathbf{1}, \mathbf{\overline{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail Both can be electroweak singlets or triplets

The $S(1,1,\overline{3})$ scalar LQ

• Interactions terms for electroweak singlet:

$$\mathcal{L} = S(\lambda Y_d^{\dagger} \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} Y_d^{\dagger} Y_u \bar{u}_R^c e_R)$$

= $S_i(\lambda y_{d_i} V_{ji}^* \bar{u}_{Lj}^c e_L - \lambda y_{d_i} \bar{d}_{Li}^c \nu_L + \tilde{\lambda} y_{d_i} y_{u_j} V_{ji}^* \bar{u}_{Rj}^c e_R)$

Integrating out *S*, contribution to $R(X_c)$ via: $(m_{S_3} \neq m_{S_1} = m_{S_2})$

$$-\frac{V_{cb}^{*}}{m_{S_{3}}^{2}}\Big(\lambda^{2}y_{b}^{2}\,\mathcal{O}_{S_{R}}^{\prime\prime}+\lambda\tilde{\lambda}y_{c}y_{b}^{2}\,\mathcal{O}_{S_{L}}^{\prime\prime}\Big)$$

[electroweak triplet has no $\tilde{\lambda}$ term]

- Can fit $R(D^{(*)})$ data if $y_b = O(1)$ Check $Z\tau^+\tau^-$ constraints, etc.
- Leptons: (i) τ alignment, charge LQ and 3rd gen. leptons opposite under U(1)_τ
 (ii) lepton MFV, (1, 3) under U(3)_L × U(3)_e [constraints differ]
- LHC Run 1 bounds on pair-produced LQ decaying to $t\tau$ or $b\nu$, $m_{S_3} \gtrsim 560 \,\mathrm{GeV}$

Constraints from $b
ightarrow s
u ar{
u}$

• With three Yukawa spurion insertions, one can write:

$$\delta \mathcal{L}' = \lambda' S Y_d^{\dagger} Y_u Y_u^{\dagger} \, \bar{q}_L^c i \tau_2 \ell_L$$

• Generates four-fermion operator:

$$rac{V_{tb}^*V_{ts}}{2m_{S_3}^2}\,y_t^2y_b^2\,\lambda^\prime\lambda\,(ar b_L\gamma^\mu s_L\,ar
u_L\gamma_\mu
u_L)$$

- Current limits on $B \to K \nu \bar{\nu}$ imply: $\lambda' / \lambda \lesssim 0.1$ some suppression of λ' required
- Electroweak singlet vector LQ is the only one of the four models w/o this constraint (E.g., vector triplet has $\lambda' \bar{q}_L Y_u Y_u^{\dagger} Y_d \tau \gamma_{\mu} \ell_L U^{\mu}$ term)

• If central values & patterns change, more "mainstream" MFV models may fit

Many signals, tests, consequences

- LHC: several extensions to current searches would be interesting
 - Extend \tilde{t} and \tilde{b} searches to higher prod. cross section
 - Search for $t \to b \tau \bar{\nu}$, $c \tau^+ \tau^-$ nonresonant decays
 - Search for states on-shell in *t*-channel, but not in *s*-channel
 - Search for $t\tau$ resonances
- Low energy probes:
 - Firm up $B \to D^{(*)} \tau \bar{\nu}$ rate and kinematic distributions; Cross checks w/ inclusive
 - Smaller theor. error in $[d\Gamma(B \to D^{(*)}\tau\bar{\nu})/dq^2]/[d\Gamma(B \to D^{(*)}l\bar{\nu})/dq^2]$ at same q^2
 - Improve bounds on $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})$
 - $\mathcal{B}(D \to \pi \nu \bar{\nu}) \sim 10^{-5}$ possible, maybe BES III; enhanced $\mathcal{B}(D \to \mu^+ \mu^-)$
 - $\mathcal{B}(B_s \to \tau^+ \tau^-) \sim 10^{-3}$ possible

Not excluded?

- LQ pair production
- top decays
- *t*-channel non-resonant l^+l^- production
- LEP $Z \rightarrow l^+ l^-$, HERA LQ production
- $c\bar{c}e^+e^-$ contact interaction / compositness
- Strongest constraint from ϵ_K :

- $B \overline{B}$ mixing, $K \overline{K}$ mixing, $D \overline{D}$ mixing
- $B \to X_s \nu \bar{\nu}, K \to \pi \nu \bar{\nu}$
- $D \rightarrow l^+ l^-$ at tree level
- $\bullet \; B^- \to \mu \bar{\nu}$ at tree level
- $B_s
 ightarrow \mu^+ \mu^-$ and $K_L
 ightarrow \mu^+ \mu^-$ at one loop

$$|\epsilon_K|_{\rm SM} = \frac{G_F^2 m_W^2 m_K f_K^2}{6\sqrt{2} \pi^2 \Delta m_K} \hat{B}_K \kappa_\epsilon |V_{cb}|^2 \lambda^2 \bar{\eta} \Big[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \Big]$$

 $|\epsilon_K|_{\mathrm{exp}} = (2.23 \pm 0.01) \times 10^{-3}$ VS. $|\epsilon_K|_{\mathrm{SM}} = (1.81 \pm 0.28) \times 10^{-3}$ [Brod & Gorbahn, 2011]

- Uncertainties big enough to allow for 5-10% enhancement of $|V_{cb}|$
- The $R(D^{(*)})$ excess may shrink and be significant; can also make cocktails...
- Even an enhancement much smaller than today can become 5σ in the future

