The $B \to D^{(*)} \tau \bar{\nu}$ anomalies: **facts and/or fictions**

Zoltan Ligeti

Aspen Winter Conference, March 19–25, 2017

F. Bernlochner, ZL, D. Robinson, M Papucci, 1703.05330

M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018 [1506.08896]

F. Bernlochner, ZL, PRD 95 (2017) 014022 [1606.09300]

D. Robinson, ZL, M Papucci, JHEP 1701 (2017) 083 [1610.02045]

+ works in progress ...

Thanks to Csaba, Erez, Jessie, Tomer, Yuri for the invitation

CA snow conditions ten days ago — "under the lamp post"...

Apologies to Jesse, Ben, Wei...

- SM cannot be the full story theoretical prejudices of the 1990s didn't pan out
- Are measures of fine tuning misleading, and NP is order of magnitude heavier?
- New physics at LHC MFV probably useful approximation to its flavor structure $\hat{\mathbb{J}}$ New physics at 10¹⁻² TeV — less strong flavor suppression, MFV less motivated
- Discovering deviations from the SM flavor sector is possible in either case (deviation from $SM \rightarrow$ upper bound on scale)

Flavor anomalies: (subjective) status

• Several measurements are in intriguing tensions with the SM f (theoretical cleanliness) Key roles of Δm_K and ϵ_K remain, to constrain NP vs. flood of LHCb data, exploring Higgs flavor, etc. • Guaranteed to probe and understand the SM much better (e.g., "new" hadronic states) Hope of discovering BSM phenomena Each could be a whole a talk...

• Exp.: NA62 taking data, by 2019 measure $K^+ \to \pi^+ \nu \bar{\nu}$ to $< 10\%$ (at SM level) Belle II approaching, time to make genuine predictions is shrinking LHCb $300/fb$ upgrade planning $++$ improving EDM, CLFV, DM, sensitivities

2/13/2017: LER superconducting final focusing

• $B \to D^{(*)}\tau\bar{\nu}$ is currently the most significant deviation from the SM (at colliders)

1. Use $B \to D^{(*)} l \bar{\nu}$ to refine $B \to D^{(*)} \tau \bar{\nu}$, lattice independent, improvable [F. Bernlochner, ZL, Papucci, Robinson, 1703.05330]

Refine $|V_{cb}|$ determination, test HQET, test lattice, test measurements... $[500]$

- 2. MFV models, leptoquarks [M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018, arXiv:1506.08896] **Suppress** $e \& \mu$ instead of enhancing τ ? [M. Freytsis, ZL, J. Ruderman, to appear]
- 3. $B \to D^{**} \ell \bar{\nu}$ in the SM and $R(D^{**})$ [F. Bernlochner, ZL, PRD 95 (2017) 014022, arXiv:1606.09300.]
	- $B \to D^{**} \ell \bar{\nu}$ for arbitrary new physics [soon]

'When you think you can finally forget a topic, it's just about to become important'

The tension with the SM

Reliable SM predictions: heavy quark symmetry $+$ lattice QCD (only D so far)

• Model indep. 2σ tension: $R(D^{(*)})$ vs. $R(X_c) = 0.223 \pm 0.004$ in SM [Freytsis, ZL, Ruderman] No $\mathcal{B}(B \to X\tau\bar{\nu})$ measurement since LEP, $\mathcal{B}(b \to X\tau^+\nu) = (2.41 \pm 0.23)\%$

Imply NP at a fairly low scale (leptoquarks, W' , etc.), likely visible at the LHC

- Next: LHCb result with hadronic τ decays, measure $R(D)$, maybe Λ_b decay
- Experimental precision will improve a lot $+$ theory uncertainty also improvable

Refining SM predictions

Can it be a theory issue?

Basics of $B \to D^{(*)} \ell \bar{\nu}$

• Only Lorentz invariance: 6 functions of q^2 , only 4 measurable with e, μ final states

$$
\langle D|\bar{c}\gamma^{\mu}b|\bar{B}\rangle = f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + \left[f_{0}(q^{2}) - f_{+}(q^{2})\right]\frac{m_{B}^{2} - m_{D}^{2}}{q^{2}}q^{\mu}
$$

\n
$$
\langle D^{*}|\bar{c}\gamma^{\mu}b|\bar{B}\rangle = -ig(q^{2})\epsilon^{\mu\nu\rho\sigma}\epsilon_{\nu}^{*}(p_{B} + p_{D^{*}})_{\rho}q_{\sigma}
$$

\n
$$
\langle D^{*}|\bar{c}\gamma^{\mu}\gamma^{5}b|\bar{B}\rangle = \epsilon^{*\mu}f(q^{2}) + a_{+}(q^{2})(\epsilon^{*} \cdot p_{B})(p_{B} + p_{D^{*}})^{\mu} + a_{-}(q^{2})(\epsilon^{*} \cdot p_{B})q^{\mu}
$$

\nTwo form factors involving $q^{\mu} = p_{B}^{\mu} - p_{D^{(*)}}^{\mu}$ do not contribute for $m_{l} = 0$
\n• **HQET** constraints: 6 functions $\Rightarrow 1$ in $m_{c,b} \gg \Lambda_{\text{QCD}}$ limit + 3 at $\mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b})$
\n
$$
\langle D|\bar{c}\gamma^{\mu}b|\bar{B}\rangle = \sqrt{m_{B}m_{D}}\left[h_{+}(v + v')^{\mu} + h_{-}(v - v')^{\mu}\right] \qquad w = v_{B} \cdot v_{D^{(*)}}'
$$

$$
\langle D^* | \bar{c} \gamma^\mu b | \bar{B} \rangle = i \sqrt{m_B m_{D^*}} h_V \varepsilon^{\mu \nu \alpha \beta} \varepsilon^*_{\nu} v'_{\alpha} v_{\beta}
$$

$$
\langle D^* | \bar{c} \gamma^\mu \gamma^5 b | \bar{B} \rangle = \sqrt{m_B m_{D^*}} \left[h_{A_1}(w+1) \varepsilon^{*\mu} - h_{A_2}(\varepsilon^* \cdot v) v^\mu - h_{A_3}(\varepsilon^* \cdot v) v'^{\mu} \right]
$$

 $m_{c,b} \gg \Lambda_{\rm QCD}$ limit: $h_+ = h_V = h_{A_1} = h_{A_3} = \xi(w)$ and $h_- = h_{A_2} = 0$

• Constrain all 4 functions from $B\to D^{(*)} l\bar{\nu} \, \Rightarrow \, \mathcal{O}(\Lambda_{\rm QCD}^2/m_{c,b}^2\,,\,\alpha_s^2)$ uncertainties

Measured spectra for e & µ **final states**

● 4 functions: two q^2 spectra in $D^{(*)}$ + two q^2 -dependent angular distributions in D^* All form factors = Isgur-Wise function $+\Lambda_{\rm QCD}/m_{c,b} + \alpha_s$ corrections

[BaBar, 0705.4008]

Consider 6 **different fit scenarios**

- Only $R(D)$ calculated in lattice QCD what are conservative uncertainties? Calculations of subleading $\Lambda_{\rm QCD}/m_{c,b}$ Isgur-Wise functions are model dependent
- Except LQCD, past calculations of $R(D^{(*)})$ do not include uncertainties properly Both theory and exp papers: $R_{1,2}(w) = R_{1,2}(1)$ ${\overbrace {\rm fit}}$ $+ R'_1$ $_{1,2}^{\prime}(1)$ fixed $(w-1)+R''_1$ $_{1,2}^{\prime\prime}(1)$ fixed $(w-1)^2/2$

Sometimes calculations using QCD sum rule predictions for $\Lambda_{\rm QCD}/m_{c,b}$ corrections are called the HQET predictions

Our fits:

Experimental inputs and self-consistency

Model-dependent inputs in SM predictions for $R_{1,2}$ in all exp. fits & theory papers

• May affect $|V_{cb}|$ from $B \to D^{(*)} l \bar{\nu}$ — long standing tensions

Our SM predictions for R(D) **and** R(D[∗])

Significance of the tension is stable across our 6 fit scenarios:

E.g., we can use no data at all + LQCD $B \to D^{(*)} l \bar{\nu} + {\sf HQET}$ form factor ratios

• Modest variations: heavy quark symmetry & phase space leave little wiggle room

Tension between our "L_{w>1}+SR" fit and data is 3.9 σ , with p-value = 11.5×10^{-5} (close to HFAG: 3.9σ , with p-value = 8.3×10^{-5})

New physics possibilities with one operator

• Add only one NP operator to the SM at a time: O_S-O_P , O_S+O_P , O_V+O_A , O_T

- Not all $1/m$ corrections in literature, some $\mathcal{O}(1/m)$ form factors had 100% uncert.
- Shifts from gray regions non-negligible if one seriously wanted to fit a NP model

New physics options

Consider redundant set of operators

• Fits to different fermion orderings convenient to understand allowed mediators

Usually only the first 5 operators considered, related by Fierz from dim-6 terms, others from dim-8 only

⇓

Fits to a single operator

Large coefficients, $\Lambda = 1 \text{ TeV}$ in plots \Rightarrow fairly light mediators (obvious: 20–30% of a tree-level rate)

In HQET limit, we confirmed the "classic" paper [Goldberger, hep-ph/9902311]

Fits to two operators

The \otimes solution are ruled out by the q^2 spectrum

Operator fits → **viable MFV models?**

- Good fits for several mediators: scalar, "Higgs-like" $(1,2)_{1/2}$ vector, "W'-like" $(1,3)_0$ "scalar leptoquark" $(\bar{3}, 1)_{1/3}$ or $(\bar{3}, 3)_{1/3}$ "vector leptoquark" $(3, 1)_{2/3}$ or $(3, 3)_{2/3}$
- If there is NP within reach, its flavor structure must be highly non-generic Surprising if only BSM operator had $(\bar{b}c)(\bar{\tau}\nu)$ structure
- Minimal flavor violation (MFV) is probably a useful starting point Global $U(3)_Q \times U(3)_u \times U(3)_d$ flavor sym. broken by $Y_u \sim (3,\bar{3},1), Y_d \sim (3,1,\bar{3})$
- Which BSM scenarios can be MFV? Freytsis, ZL, Ruderman, 1506.088961 Not scalars or vectors, viable leptoquarks: scalar $S(1,1,\overline{3})$ or vector $U_\mu(1,1,3)$

Bounds: $b \to s \nu \bar{\nu}$, D^0 & K^0 mixing, $Z \to \tau^+ \tau^-$, LHC contact int., $pp \to \tau^+ \tau^-$, etc.

How odd scenarios may be viable?

All papers enhance the τ mode compared to the SM

Can one suppress the e and μ modes instead? [Freytsis, ZL, Ruderman, to appear]

• Unique viable option: modify the SM four-fermion operator

Good fit with: $V_{cb}^{\rm (exp)} \sim V_{cb}^{\rm (SM)} \times 0.9 ~~~~~~ V_{ub}^{\rm (exp)} \sim V_{ub}^{\rm (SM)} \times 0.9$

• Many relevant constraints, one of the strongest from ϵ_K

What about $e - \mu$ (non)universality?

 \bullet How well is the difference of the e and μ rates constrained?

Parameters	De sample	$D\mu$ sample	combined result
$\rho_D^2 \over \rho_{D^*}^2$		$1.22 \pm 0.05 \pm 0.10$ $1.10 \pm 0.07 \pm 0.10$ $1.16 \pm 0.04 \pm 0.08$	
		$1.34 \pm 0.05 \pm 0.09$ $1.33 \pm 0.06 \pm 0.09$ $1.33 \pm 0.04 \pm 0.09$	
R_1		$1.59 \pm 0.09 \pm 0.15$ $1.53 \pm 0.10 \pm 0.17$ $1.56 \pm 0.07 \pm 0.15$	
R_2		$0.67 \pm 0.07 \pm 0.10$ $0.68 \pm 0.08 \pm 0.10$ $0.66 \pm 0.05 \pm 0.09$	
$\mathcal{B}(D^0\ell\overline{\nu})(\%)$		$2.38 \pm 0.04 \pm 0.15$ $2.25 \pm 0.04 \pm 0.17$ $2.32 \pm 0.03 \pm 0.13$	
$\mathcal{B}(D^{*0} \ell \overline{\nu})(\%)$		$5.50 \pm 0.05 \pm 0.23$ $5.34 \pm 0.06 \pm 0.37$ $5.48 \pm 0.04 \pm 0.22$	
χ^2 /n.d.f. (probability) 416/468 (0.96)		488/464(0.21)	2.0/6(0.92)

[BaBar, 0809.0828 — similar results in Belle, 1010.5620]

 Γ_1

 Γ_2

 e^+ _v, anything

 $\mu^+ \nu_\mu$ anything

 $\ell^+ \nu_\ell$ anything

 $\overline{p}e^{+}\nu_{e}$ anything

- \blacktriangleright 10% difference allowed... some wrong statements...
- Γ_3 \bullet How much better can difference be constrained better? $\frac{1}{r_{\rm A}}$

Reaching the 1% level on ratio might be possible (but challenging) at Belle II

 $(10.86 \pm 0.16)\%$

 $(10.86 \pm 0.16)\%$

 $(10.86 \pm 0.16)\%$

 $< 5.9 \times 10^{-4}$

$$
\boldsymbol{B\to D^{**}\tau\bar\nu}
$$

Why bother...?

• $B \to D^{**} \tau \bar{\nu}$: rates to narrow D_1, D_2^* measurable? No predictions

In $B_s\to D_s^{**}\ell\bar\nu$ case, all $4\ D_s^{**}$ states are narrow \Rightarrow LHCb?

[Belle, 1507.03233]

Some model independent results

• At $w \equiv v \cdot v' = 1$, the $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$ matrix element is determined by masses and leading order Isgur-Wise function [Leibovich, Ligeti, Stewart, Wise, hep-ph/9703213, hep-ph/9705467]

Kinematic range: $1 \leq w \lesssim 1.3$ and in the τ case $1 \leq w \lesssim 1.2$

$$
\text{Meson masses:} \qquad m_{H_{\pm}} = m_Q + \bar{\Lambda}^H - \frac{\lambda_1^H}{2m_Q} \pm \frac{n_{\mp} \lambda_2^H}{2m_Q} + \dots \qquad n_{\pm} = 2J_{\pm} + 1
$$

For example:

$$
\frac{\langle D_1(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_1}m_B}}=f_{V_1}\epsilon^{*\mu}+(f_{V_2}v^{\mu}+f_{V_3}v'^{\mu})(\epsilon^*\cdot v)
$$

$$
\sqrt{6} f_{V_1}(w) = (1 - w^2) \, \tau(w) - 4 \, \frac{\bar{\Lambda}' - \bar{\Lambda}}{m_c} \, \tau(w) + \mathcal{O}\left(\frac{w - 1}{m_{c,b}}\right) + \ldots
$$

• These "known" $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$ terms are numerically very important

• No expressions in the literature for $B \to D^{**} \tau \bar{\nu}$ rates at all — fixing this...

Predictions for spectra

Study all uncertainties, including effects neglected in LLSW

• As for $B \to D^{(*)}\ell\bar{\nu}$, heavy quark symmetry relates the extra form factor in the τ mode to those with e, μ — finalizing the uncertainties

Complementary sensitivities to NP

Complementary sensitivities **Examplementary sensitivities** [Bernlochner & ZL, 1606.09300]

Different patterns in two blue bands

• 2HDM just for illustration — explore influence of all possible non-SM operators

Final comments

Conclusions

- $B \to D^{(*)}\tau\bar{\nu}$: amusing if NP shows up in an operator w/o much SM suppression
- SM predictions can be systematically improved with more data
- There are good operator fits, and (somewhat) sensible MFV leptoquark models (Fairly wild scenarios still viable)
- Measurements can improve in the next decade by nearly an order of magnitude (Even if central values change, plenty of room for significant deviations from SM)
- More theory progress to come, will impact measurements and sensitivity to BSM

Bonus^l **slides**

BaBar statements from q ² **spectrum results**

• BaBar studied consistency of rates with 2HDM, and $d\Gamma/dq^2$ with several models

- Found that type-II 2HDM gave nearly as bad fit to the data as the SM
- \bullet d $\Gamma/\mathrm{d}q^2$ has additional discriminating power (no other distribution measured yet)
- No public info on bin-to-bin correlations, eyeball which solutions are (dis)favored

Survey of MFV model

- Scalars: Need $C_{S_L}/C_{S_R} \sim \mathcal{O}(1)$ Hard to avoid y_c suppression or $\mathcal{O}(1)$ coupling to 1st generation
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet excluded by LHC, simplest charges don't work w/o assumptions If dynamics allows $W'\bar Q_L^3 Q_L^3$, but not $W'\bar Q_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170]
- Leptoquarks: Viable MFV models exist

Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\bar{3}, 1, 1), (1, \bar{3}, 1), (1, 1, \bar{3})$ vectors: $U_{\mu} \sim (3, 1, 1), (1, 3, 1), (1, 1, 3)$

• Possibly viable: $S(1,1,\overline{3})$ and $U_{\mu}(1,1,3) \Rightarrow$ consider in more detail

Both can be electroweak singlets or triplets

- Scalars: Need comparable values of C_{S_L} and C_{S_R}
	- If H^\pm flavor singlet, $C_{S_L} \propto y_c$, so cannot fit $R(D^{(*)})$ keeping y_t perturbative
	- If H^{\pm} is charged under flavor (combination of Y-s, to couple to quarks & leptons), to generate $C_{S_L} \sim C_{S_R},$ some $\mathcal{O}(1)$ coupling to 1st generation quarks unavoidable Bounds on $4q$ or $2q2\ell$ operators exclude it
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet w/ W-like couplings: $m_{W'} \gtrsim 1.8 \,\mathrm{TeV} \Longleftrightarrow 0.2 \sim g^2 |V_{cb}| (1 \,\mathrm{TeV}/m_{W'})^2$ Couplings to u, d suppressed for $(\bar{3},3,1)$ and $(\bar{3},1,3)$ under $U(3)_Q \times U(3)_u \times U(3)_d$ $(\bar{3},3,1): b \rightarrow c$ transitions suppressed by y_c , too small $(\overline{3},1,3)$: can fit data if $y_b = \mathcal{O}(1)$, but excluded by tree-level FCNC via $W^{\prime 0}$

MFV leptoquarks

• Assign charges under flavor sym.: [viable MFV LQs: Freytsis, ZL, Ruderman]

 $U(3)_Q \times U(3)_u \times U(3)_d$

Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\bar{3}, 1, 1), (1, \bar{3}, 1), (1, 1, \bar{3})$ vectors: $U_{\mu} \sim (3, 1, 1), (1, 3, 1), (1, 1, 3)$

 $S(\bar{\bf 3},{\bf 1},{\bf 1})$ and $U_\mu({\bf 3},{\bf 1},{\bf 1})$ give large $pp\to \tau^+\tau^-$, excluded by Z' searches

 $S(\mathbf{1},\mathbf{\bar{3}},\mathbf{1})$ and $U_\mu(\mathbf{1},\mathbf{3},\mathbf{1})$ give y_c suppressed $B\to D^{(*)}\tau\bar\nu$ contributions \Rightarrow too large couplings, or too light leptoquarks

• Possibly viable: $S(1,1,\overline{3})$ and $U_{\mu}(1,1,3) \Rightarrow$ consider in more detail Both can be electroweak singlets or triplets

The $S(1,1,\overline{3})$ scalar LQ

• Interactions terms for electroweak singlet:

$$
\mathcal{L} = S(\lambda Y_d^{\dagger} \bar{q}_L^c i\tau_2 \ell_L + \tilde{\lambda} Y_d^{\dagger} Y_u \bar{u}_R^c e_R)
$$

= $S_i(\lambda y_{d_i} V_{ji}^* \bar{u}_{Lj}^c e_L - \lambda y_{d_i} \bar{d}_{Li}^c \nu_L + \tilde{\lambda} y_{d_i} y_{u_j} V_{ji}^* \bar{u}_{Rj}^c e_R)$

Integrating out S, contribution to $R(X_c)$ via: $\neq m_{S_1} = m_{S_2}$

$$
-\displaystyle\frac{V_{cb}^*}{m_{S_3}^2}\Big(\lambda^2y_b^2\,\mathcal{O}_{S_R}''+\lambda\tilde\lambda y_cy_b^2\,\mathcal{O}_{S_L}''\Big)
$$

[electroweak triplet has no λ term]

- Can fit $R(D^{(*)})$ data if $y_b = \mathcal{O}(1)$ Check $Z\tau^+\tau$ Check $Z\tau^+\tau^-$ constraints, etc.
- Leptons: (i) τ alignment, charge LQ and 3rd gen. leptons opposite under $U(1)_{\tau}$ (ii) lepton MFV, $(1,\bar{3})$ under $U(3)_L \times U(3)_e$ [constraints differ]
- LHC Run 1 bounds on pair-produced LQ decaying to $t\tau$ or $b\nu$, $m_{S_3} \gtrsim 560\,\mathrm{GeV}$

Constraints from $b \rightarrow s \nu \bar{\nu}$

• With three Yukawa spurion insertions, one can write:

$$
\delta \mathcal{L}' = \lambda' S Y_d^{\dagger} Y_u Y_u^{\dagger} \, \bar{q}_L^c i \tau_2 \ell_L
$$

Generates four-fermion operator:

$$
\frac{V_{tb}^* V_{ts}}{2 m_{S_3}^2} \, y_t^2 y_b^2 \, \lambda' \lambda \, (\bar b_L \gamma^\mu s_L \, \bar \nu_L \gamma_\mu \nu_L)
$$

- Current limits on $B \to K \nu \bar{\nu}$ imply: $\lambda'/\lambda \lesssim 0.1$ some suppression of λ' required
- Electroweak singlet vector LQ is the only one of the four models w/o this constraint (E.g., vector triplet has $\lambda' \bar{q}_L Y_u Y_u^\dagger Y_d \tau \gamma_\mu \ell_L U^\mu$ term)
- If central values & patterns change, more "mainstream" MFV models may fit

Many signals, tests, consequences

- LHC: several extensions to current searches would be interesting
	- $-$ Extend \tilde{t} and \tilde{b} searches to higher prod. cross section
	- $-$ Search for $t\to b\tau\bar\nu, \, c\tau^+\tau^-$ nonresonant decays
	- **–** Search for states on-shell in t-channel, but not in s-channel
	- **–** Search for *t*^τ resonances
- Low energy probes:
	- $-$ Firm up $B\to D^{(*)}\tau\bar\nu$ rate and kinematic distributions; Cross checks w/ inclusive
	- $-$ Smaller theor. error in $[{\rm d}\Gamma(B\to D^{(*)}\tau\bar\nu)/{\rm d} q^2]/[{\rm d}\Gamma(B\to D^{(*)}l\bar\nu)/{\rm d} q^2]$ at same q^2
	- **–** Improve bounds on $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})$
	- $-$ *B*(*D* → πν $\bar{\nu}$) $\sim 10^{-5}$ possible, maybe BES III; enhanced *B*(*D* → $\mu^+ \mu^-$)
	- $\mathcal{B}(B_s\to \tau^+\tau^-)\sim 10^{-3}$ possible

Not excluded?

- LQ pair production
- top decays
- *t*-channel non-resonant l^+l^- production
- LEP $Z \rightarrow l^+l^-$, HERA LQ production
- $c\bar{c}e^+e^-$ contact interaction / compositness
- Strongest constraint from ϵ_K :
- $B \overline{B}$ mixing, $K \overline{K}$ mixing, $D \overline{D}$ mixing
- \bullet B \rightarrow $X_s\nu\bar{\nu}$, $K \rightarrow \pi \nu \bar{\nu}$
- $D \rightarrow l^+l^-$ at tree level
- $B^- \to \mu \bar{\nu}$ at tree level
- $B_s \to \mu^+ \mu^-$ and $K_L \to \mu^+ \mu^-$ at one loop

$$
|\epsilon_K|_{\rm SM} = \frac{G_F^2 m_W^2 m_K f_K^2}{6\sqrt{2} \pi^2 \Delta m_K} \hat{B}_K \kappa_\epsilon |V_{cb}|^2 \lambda^2 \bar{\eta} \Big[|V_{cb}|^2 (1 - \bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \Big]
$$

 $|\epsilon_K|_{\rm exp}=(2.23\pm 0.01)\times 10^{-3}$ VS. $|\epsilon_K|_{\rm SM}=(1.81\pm 0.28)\times 10^{-3}$ [Brod & Gorbahn, 2011]

- $-$ Uncertainties big enough to allow for $5-10\%$ enhancement of $|V_{cb}|$
- **–** The R(D(∗)) excess may shrink and be significant; can also make cocktails...
- Even an enhancement much smaller than today can become 5σ in the future

