Dark Matter Searches at CMS

Kristian Hahn Northwestern University

"From the LHC to Dark Matter and Beyond" Aspen 2017 Winter Conference March 21, 2017

Searches for Dark Matter in CMS

Look for generic DM signature of noninteracting particles

- Leaves no activity in the detector, nothing to reconstruct
- DM must instead recoil against something to become "visible"
- "Mono-X" (or "E_T^{miss}+X") includes "X" for viable detection
- X: jets, photons, W/Z, Higgs, heavy-flavor ...

Modeling DM collider production

- Models used in the design and interpretation of DM searches
- Need to balance model complexity with predictive accuracy ...

Modeling DM collider production

- Models used in the design and interpretation of DM searches
- Need to balance model complexity with predictive accuracy ...

Simplified models: capture kinematics, lack completion

- Pair-produced DM Dirac fermions, χ
- Massive DM ↔ SM mediator, on/off-shell production
- Couplings: vector/axial/scalar/pseudo
- Minimal flavor violation
- Minimal mediator width: couples only to SM and χ

Only four parameters: $g_q, g_{DM}, m_{\chi}, M_{med}$

Simplified models/benchmarks from the LHC Dark Matter Forum: 1507.00966

The mono-X Searches

X	Dataset	Documentation
jet or hadronic V	2016, 12.9 fb-1	EXO-16-037, 1703.01651
photon	2016, 12.9 fb-1	EXO-16-039
Z(II)	2016, 12.9 fb-1	EXO-16-038
Higgs (γγ)	2015, 2.3 fb-1	EXO-16-011
Higgs (bb), with yy combo	2015, 2.3 fb-1	EXO-16-012
tt (hadronic, semileptonic)	2015, 2.2 fb-1	EXO-16-005
tt (dileptonic + tt combination)	2016, 2.2 fb-1	EXO-16-028
t hadronic	2016, 12.9 fb-1	EXO-16-040
bb	2015, 2.2 fb-1	B2G-15-007
Direct Mediator Production	Dataset	Documentation
dijets	2016, 12.9 fb-1	EXO-16-032, 1611.03568
boosted dijets	2016, 2.7 fb-1	EXO-16-030
dijets	2016, 27+36 fb-1	EXO-16-056

monojet / mono-V

Selection : large E_T^{miss} , ≥ 1 high- p_T jet

- Mono-V : p_T^{AK8} , E_T^{miss} > 250 GeV, m_{ii} 65-105 GeV, τ_{12} < 0.6
- Mono-jet : remaining events, $p_T^{AK4} > 100 \text{ GeV}$, $E_T^{miss} > 200 \text{ GeV}$

Signal from E_T^{miss} fit, dominant bkgs : $Z(\nu\nu)$ +jets, $W(I_{lost}\nu)$ +jets

Control regions constrain bkgs. @ high-E_T^{miss}

 Z(µµ), W(I_{obs}ν), high-stat γ+jet

NLO+EWK
 γ/Z and W/Z
 transfer factors
 extrapolate from
 CR → SR

monojet / mono-V

Both spin-1 and spin-0 mediators

- Vector/Axial exclusion up to 1.95 TeV
- Scalar(*)/Pseudo up to 100/400 GeV

(*) Scalar exclusion assuming mediator coupling to bosons, no exclusion otherwise

monojet / mono-V

Reinterpret as invisible Higgs : BR($h \rightarrow inv.$) < 0.44 (0.56 exp.)

Recast as limits on SI/SD DM-nucleon cross section

Low-mDM reach complimentary to direct detection!

Selections: $E_{\tau}^{miss} > 100 \text{ GeV}$, $ee/\mu\mu$ with $p_{\tau}^{\parallel} > 60 \text{ GeV}$, $E_{\tau}^{miss} / p_{\tau}^{\parallel}$ balance, vetoes on extra e, μ , τ , b-jet, jets

Dominant Bkg: ZZ/WZ, estimated w/ MC @ NNLO-QCD, NLO-EWK

Non-resonant bkgs. (eg: tt, WW, tW) estimated from eµ data

mono-Z(II)

Limits for vector/axial mediator of 450/470 GeV BR($h \rightarrow invisible$) < 0.86 (0.70 exp.)

mono-photon

Selections: $E_T^{miss} > 170 \text{ GeV}$, $p_T^{\gamma} > 175 \text{ GeV}$, vetoes on extra e, μ

Dominant Bkg: $Z(\nu\nu)\gamma$, $W(I\nu)\gamma$, estimated with MC @ NNLO-QCD (DYRES), NLO-EWK corrections

MisIDed lepton, noncollision background estimated from data

mono-photon

mono-Higgs

Higgs \rightarrow bb, categorized according to Higgs p_{T}

- Resolved: 2 AK4 jets, b-tagged, $p_T^{bb} > 150 \text{ GeV}$, $E_T^{miss} > 170 \text{ GeV}$
- Boosted: 1 AK8 jet, subjet b-tagged, $p_T^j \& E_T^{miss} > 170 \text{ GeV}$

Higgs \rightarrow **yy**: $p_T^{yy} > 90$ GeV, $E_T^{miss} > 105$ GeV, $p_T^{y_1}(p_T^{y_2}) / m^{y_y} > 0.5$ (0.25)

mono-Higgs

 A^0

Limits on Type-II 2HDM + DM model

- Exclude mZ' between 600-1863 GeV for gZ' = 0.8
- Between 768-2086 GeV for EWK-constrained gZ' (formula)

ttbar + DM

CMS-PAS-EXO-16-005: semileptonic + all-hadronic

- $E_{T}^{miss} > 200$ for all-hadronic, $E_{T}^{miss} > 160$ GeV, $p_{T}^{-1} > 30$ GeV for semileptonic, both use b tag and min $\Delta \phi$ (jet, E_{T}^{miss}) requirements
- Dominant background from SM ttbar with one less hadronic top. Not the case for signal
- Employ resolved top quark tagger to categorize signal and bkg according to signal purity
- Simultaneous E_T^{miss} fit using 3 signal
 + 9 control regions

CMS-PAS-EXO-16-029 : dileptonic & combination w/ semileptonic + hadronic

- Dileptonic: $E_T^{miss} > 50$, 2 leptons $p_T^{I} > 30 \text{ GeV}$, $\geq 1 \text{ b tag}$, min $\Delta \phi$ (jet, E_T^{miss})
- Irreducible dileptonic SM ttbar background

ttbar + DM

 E_{τ}^{miss} [GeV]

ttbar + DM

First expected exclusion of low-mass scalar mediators

- Observed exclusion of mMed = 10 GeV, mDM = 1 GeV with gSM = gDM = 1 for semileptonic + hadronic combination
- Addition of dileptonic improves expected exclusion, weakens observed ...

mono-top

CA1.5, $p_T^{j} \& E_T^{miss} > 250 \text{ GeV}, m_i 110-210 \text{ GeV}, \tau_{23}$, subjet b tag

- Backgrounds from SM ttbar, $Z(\nu\nu)$ +jets, $W(I\nu)$ + jets
- Constrained via simultaneous of signal region with 7 control regions

mono-top

Interpretation with resonant BNV and FCNC signal models

• Distinct model from that used commonly in mono-X searches

Charged scalar excluded up to 2.7 TeV (3.0 TeV expected) FCNC mediator excluded up to 1.5 TeV (1.7 TeV expected)

CMS Dark Matter Summary

Comparison of various MET+X channels: <u>CMS-DP-2016/057</u>

Axial vector mediator: monojet/mono-V, mono-Z(II), mono-photon

- Including search for direct mediator production w/ dijets
- Translation to SD DM-nucleon cross section

Robust coverage through multiple search channels, sensitivity complementary to direct detection

CMS Dark Matter Summary

Comparison of various MET+X channels: <u>CMS-DP-2016/057</u>

Scalar & pseudoscalar: monojet & tt+DM (semileptonic+hadronic)

- Extending reach to low scalar mediator mass
- Both searches contribute for low-mass pseudoscalars

NB: monojet/mono-V uses fermion-only couplings here, consistent with tt+DM

Update: DM Mediator Search w/ Dijets

A combination of :

- Boosted (100-300 GeV) using 13 fb-1
- Low-mass (0.6-1.6 TeV) search with 26 fb-1 using data scouting
- High-mass (> 1.6 TeV) search with 36 fb-1

Model-independent search for excess in dijet mass spectrum

- Sensitive to wide range of BSM, including DM
- AV mediators excluded between 0.6 2.6 TeV

Summary

Robust program of E_T^{miss} +X DM searches in CMS

Run 2 results pushing into new territory, limits on

- Multi-Tev spin-1 mediators
- Low-mass spin-0 mediators

Complementary strengths vs direct/indirect detection

On the horizon:

- Large bump in stats for several searches
- Stronger interplay between DM channels
- Interpretations with somewhat-less-simplified models

More monojet

More monojet

dd+DM

More Summary

Figure 4. A comparison of CMS results to the $m_{DM}-\sigma_{SI}$ plane . Unlike in the mass-mass plane, the limits are shown at 90% CL. The CMS contour in the SI plane is for a Vector mediator, Dirac DM and couplings $g_q = 0.25$ and $g_{DM} = 1$. The CMS SI exclusion contour is compared with the LUX 2015, PandaX-II 2016, CDMSLite 2015 and CRESST-II 2015 limits, which constitutes the strongest documented constraints in the shown mass range. It should be noted that the CMS limits do not include a constraint on the relic density and also the absolute exclusion of the different CMS searches as well as their relative importance will strongly depend on the chosen coupling and model scenario. Therefore, the shown CMS exclusion regions in this plot are not applicable to other choices of coupling values or models.

More Summary

Figure 2. 95% CL exclusion regions in $M_{\text{med}} - m_{\text{DM}}$ plane for different \not{E}_T based DM searches from CMS in the lepto-phobic AV and V models. It should be noted that the exclusion regions and relic density contours in this plot are not applicable to other choices of coupling values or models.

Dijet

SI/SD Translation

$$\begin{split} \sigma_{\rm SI}^0 &= \frac{9 \, g_{\rm DM}^2 \, g_q^2 \, \mu_{n\chi}^2}{\pi M_{\rm med}^4} \\ &\approx 1.1 \times 10^{-39} \, \mathrm{cm}^2 \cdot \left(\frac{g_{\rm DM} \, g_q}{1}\right)^2 \left(\frac{1 \, \mathrm{TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \, \mathrm{GeV}}\right)^2 \\ \sigma_{\rm SD}^0 &= \frac{3 \, g_{\rm DM}^2 \, g_q^2 (\Delta_u + \Delta_d + \Delta_s)^2 \, \mu_{n\chi}^2}{\pi M_{\rm med}^4} \\ &\approx 4.6 \times 10^{-41} \, \mathrm{cm}^2 \cdot \left(\frac{g_{\rm DM} \, g_q}{1}\right)^2 \left(\frac{1 \, \mathrm{TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \, \mathrm{GeV}}\right)^2 \end{split}$$

Interpretation

Comparison of collider results with (in)direct detection

- Recent focus of LHC Dark Matter Working Group (DMWG)
- Developed recommendations for collider/non-collider comparison

Translate collider limits to $\sigma_{\text{DM-N}}$

& $\sigma\nu_{\mbox{\tiny rel}}$, rather than reverse

- Avoid subtleties and assumptions involved in mapping DD/ID to collider
- DD: vector/scalar (SI) axial (SD) mediators
- ID: pseusdoscalar mediators

Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

$$\begin{split} \Gamma_{\min}^{\mathrm{V}} &= \frac{g_{\chi}^2 M_{\mathrm{med}}}{12\pi} \left(1 + \frac{2m_{\chi}^2}{M_{\mathrm{med}}^2} \right) \beta_{DM} \theta(M_{\mathrm{med}} - 2m_{\chi}) \\ &+ \sum_{q} \frac{3g_{q}^2 M_{\mathrm{med}}}{12\pi} \left(1 + \frac{2m_{q}^2}{M_{\mathrm{med}}^2} \right) \beta_{q} \theta(M_{\mathrm{med}} - 2m_{q}), \\ \Gamma_{\min}^{\mathrm{A}} &= \frac{g_{\chi}^2 M_{\mathrm{med}}}{12\pi} \beta_{DM}^3 \theta(M_{\mathrm{med}} - 2m_{\chi}) \\ &+ \sum_{q} \frac{3g_{q}^2 M_{\mathrm{med}}}{12\pi} \beta_{q}^3 \theta(M_{\mathrm{med}} - 2m_{q}) \,. \end{split}$$

$$\begin{split} \Gamma_{\phi,a} &= \sum_{f} N_{c} \frac{y_{f}^{2} g_{q}^{2} m_{\phi,a}}{16\pi} \left(1 - \frac{4m_{f}^{2}}{m_{\phi,a}^{2}} \right)^{x/2} + \frac{g_{\chi}^{2} m_{\phi,a}}{8\pi} \left(1 - \frac{4m_{\chi}^{2}}{m_{\phi,a}^{2}} \right)^{x/2} \\ &+ \frac{\alpha_{s}^{2} y_{t}^{2} g_{q}^{2} m_{\phi,a}^{3}}{32\pi^{3} v^{2}} \left| f_{\phi,a} \left(\frac{4m_{t}^{2}}{m_{\phi,a}^{2}} \right) \right|^{2} \end{split}$$

$$f_{\phi}(\tau) = \tau \left[1 + (1 - \tau) \arctan^2 \left(\frac{1}{\sqrt{\tau - 1}} \right) \right],$$

$$f_{a}(\tau) = \tau \arctan^2 \left(\frac{1}{\sqrt{\tau - 1}} \right)$$

Figure 2.23: Example of the dependence of the kinematics on the scalar mediator mass in the $t\bar{t}+E_T$ signature. The Dark Matter mass is fixed to be m_{χ} =1GeV.

Figure 2.24: Example of the dependence of the kinematics on the pseudoscalar mediator mass in the $t\bar{t}+\not{E}_T$. The Dark Matter mass is fixed to be m_{χ} =1GeV. All figures concerning the $t\bar{t}+\not{E}_T$ signature have been produced using a leading order model within MADGRAPH5_AMC@NLO 2.2.2, using PYTHIA 8 for the parton shower.

Total parton-level cross sections versus energy, for Λ = 600 GeV. (Notice the differing vertical scales between the two panels.)

Contribution from the $-g_{lphaeta}$ term in

Contribution from the $\frac{q_{\alpha}q_{\beta}}{m_{\nu}^2}$ term

This term dominates at LHC energies

Bell, Cai, Dent, Leane & Weller, 11XIV:1503.07874 9

Goldstone boson equivalence theorem & Ward identity

At high energy, Goldstone boson equivalence theorem says: \succ We can replace W_L with the corresponding Goldstone boson.

Since the Goldstone boson couples to quarks with strength proportional to their mass, these terms are close to zero.
 We should not get W_L production.

For ξ ≠ 1, the relevant Ward identity is broken.
 → Missing diagrams?
 → Diagrams where W radiated from the mediator!

LHC DARK MATTER WORKING GOUP MEETING

N. BELL, U. MELBOURNE, 10 DEC 2015

Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels

Andreas Albert,^{1,*} Mihailo Backović,² Antonio Boveia,^{3,*} Oliver Buchmueller,^{4,*} Giorgio Busoni,^{5,*} Albert De Roeck,^{6,7} Caterina Doglioni,^{8,*} Tristan DuPree,^{9,*} Malcolm Fairbairn,^{10,*} Marie-Hélène Genest,¹¹ Stefania Gori,¹² Giuliano Gustavino,¹³ Kristian Hahn,^{14,*} Ulrich Haisch,^{15,16,*} Philip C. Harris,⁷ Dan Hayden,¹⁷ Valerio Ippolito,¹⁸ Isabelle John,⁸ Felix Kahlhoefer,^{19,*} Suchita Kulkarni,²⁰ Greg Landsberg,²¹ Steven Lowette,²² Kentarou Mawatari,¹¹ Antonio Riotto,²³ William Shepherd,²⁴ Tim M.P. Tait,^{25,*} Emma Tolley,³ Patrick Tunney,^{10,*} Bryan Zaldivar,^{26,*} Markus Zinser²⁴

*Editor

¹III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
²Center for Cosmology, Particle Physics and Phenomenology - CP3, Universite Catholique de Louvain, Louvain-la-neuve, Belgium
³Ohio State University, 191 W. Woodruff Avenue Columbus, OH 43210
⁴High Energy Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2AZ, United Kingdom
⁵ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, 3010, Australia
⁶Antwerp University, B2610 Wilrijk, Belgium.
⁷CERN, EP Department, CH-1211 Geneva 23, Switzerland
⁸Fysiska institutionen, Lunds universitet, Lund, Sweden
⁹Nikhef, Science Park 105, NL-1098 XG Amsterdam, The Netherlands

¹⁰Physics, King's College London, Strand, London, WC2R 2LS, UK

arXiv:1703.05703v2 [hep-ex] 17 Mar 2017