Two Future Avenues for DM Direct Detection

Ranny Budnik Weizmann Institute of Science

Collaborators:

H. Landsman, N. Priel, R. Itay, M.M. Devi, G. Koltman, A. Kreisel, A. Soffer T. Volansky, O. Cheshnovsky, O. Slone, Y. Mosbacher, M. Weiss

Landscape of DM direct detection

The Color of Fancy Sapphire

All are $Al_{2}O_{3} > 99.99\%$

Crystal Carmy-Turner Spectrograph Long Pass filter Newton 940 CCD Tunable wavelength Laser

Color Centers

- It is known for many years that radiation damage gives color to transparent windows near e.g. nuclear power plants
- There are various mechanisms causing this effect, and the incident radiation can be gamma, neutron or charged particles

F-center in a nutshell

- The absorption
 dependency on the lattice
 constant is a power law
 (particle in a box)
- By this mechanism a transparent medium becomes colored
- Elastic collision may produce displacement (gamma, electron, neutron and ions) – O(10) eV

F-center in a nutshell

- The absorption
 dependency on the lattice
 constant is a power law
 (particle in a box)
- By this mechanism a transparent medium becomes colored
- Elastic collision may produce displacement (gamma, electron, neutron and ions) – O(10) eV

The challenges of CCs

- Missing orders of magnitudes in background
- Direct calculation extremely hard due to phase space (thresholds, types, electronic structures...)
- However, only extremely difficult once established the signal
- Need to understand and achieve:
 - Annealing, bleaching, counting, production, discrimination, accurate <u>calibration</u> sources, low price, high <u>purity</u>....

The benefits of CCs

- Natural discrimination
- Likely directional
- Multiple targets, each with different signal
- Calibration is possible
- Many optional handles: B field, RF, polarization...
- And of course, almost the only one on that side of town (10 eV town)!

Physics reach

Two candidate crystals with known CCs and thresholds. The vertical red dashed line is where traditional experiments lose sensitivity.

Dashed/solid lines represent different DM form factors.

Modulation and directionality

- Sub-daily modulation due to different thresholds wrt the lattice axes
- Strongest for near-threshold masses
- A unique signature that differs from all types of background
- On top of that, annual modulation is still expected

With Cheshnovsky, Volansky and Slone (in preparation)

The goal:

Identifying a crystal which is sensitive to low-energy-neutrons (and LDM...)

(and check the discrimination between Nuclear Recoils coming from neutrons, and Electronic Recoils originating from gammas)

The goal:

Identifying a crystal which is sensitive to low-energy-neutrons (and LDM...)

(and check the discrimination between Nuclear Recoils coming from neutrons, and Electronic Recoils originating from gammas)

Two parallel ongoing efforts:

- 1) Irradiation of as many crystals as possible
- 2) Establish an optical setup for F-centers measurement

Many optional targets, but little is known

Crystal Irradiation in SARAF - 30 keV neutrons

Preliminary results

LiF, before and after n irradiation

Preliminary results

CaF, before and after n irradiation

Landscape of DM direct detection

Superradiance

- A quantum-correlation phenomena knows since Dicke 1954
- Demonstrated in many systems
- Basic properties:
 - Correlated timing of EM decay of similar states
 - Correlation in photon directions

Requirements:

- Density >> λ⁻³
- Lifetime >> formation time, light crossing
- "Population inversion"
- "no disturbances"

Superradiance possible in xenon?

Seems that the basic requirements are there...

<ns formation

>ns decay time

Why is it interesting?

- 1. Discrimination
- 2. Directionality!

Chepel 2013, Aprile 2010 and more

Extra motivation

- Lasing has been demonstrated with bulk ionization (1971, Basov)
- Some features of measurements might be a hint (time structure, XMASS)

Fig. 3. Emission spectra of liquid xenon (the spectrometer resolution is shown in the right-hand corner):
1) pumping current density 150 A/cm²; 2) pumping current density 70 A/cm²; 3) low excitation density.

Why haven't we seen anything?

Temporal:

- Requires ~ns resolution (not usually employed)
- Averaging over all parts of a cloud → smooth decay
- Some hints might exist

Directional:

- Averaging over events washes out directionality
- Reflections, partial collection usually not considered a "problem"

The Direxeno experiment

3.5 3.5 2.5 (χ^2/ν)=2.1 20 bord (χ^2/ν)=2.1 20 bord (χ^2/ν)=2.1 Event no.

- We will have the ability to distinguish non-isotropic from isotropic emission
- Also look at timedirection correlation
- Setup fully designed and under construction

R. Budnik, Aspen 2017

Direxeno

Expected to start operating in a few months

R. Budnik, Aspen 2017

Summary

- Two avenues with possible impact on the future of DD:
 - Color Centers as low threshold NR detectors:
 - Promising prospects
 - Many unknowns on technology, backgrounds, theory
 - Experimental work in progress
 - Xenon Superradiance:
 - Theoretical and experimental motivations for the existence
 - Possibilities in discrimination and directionality
 - Dedicated DIREXENO setup designed and being built
- Stay tuned...

Known states of lonic crystals

(h) A_B antisite defect

F-center
A vacancy filled by an electron can exhibit fluorescence.

(g) BA antisite defect