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• Dark matter is primarily an 
astrophysical and 
cosmological problem. 

• It is not primarily a particle 
physics problem, although it 
can easily be accommodated 
within many extensions of the 
Standard Model.

• Consensus: some kind of new 
particle(s). 

Dark Matter: what is it, and what it isn’t



Dark Matter: Possible Ideas
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4.3 Non-WIMP dark matter 17
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Figure 4-7. The landscape of dark matter candidates [from T. Tait].

Figure 4-8. The range of dark matter candidates’ masses and interaction cross sections with a nucleus of
Xe (for illustrative purposes) compiled by L. Pearce. Dark matter candidates have an enormous range of
possible masses and interaction cross sections.

Community Planning Study: Snowmass 2013

Credits: Tim Tait



In dark matter science, hope for the best…
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• Let’s hope we can find dark matter in the lab…



…but prepare for the worst!
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• Gravitational signatures might be all we can observe!  

Gravitational Lensing

Merging Clusters

Stellar StreamsDwarf galaxies

Lyman-alpha forest
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Which kind of DM physics can we probe?
4 M. Vogelsberger et al.

Figure 1. Properties of the effective DM models relevant for structure formation. Left: Linear initial matter power spectra (�linear(k)2 = k3Plinear(k)/2⇡2)
for the different models (CDM and ETHOS models ETHOS-1 to ETHOS-4) as a function of comoving wavenumber k. The ETHOS models differ in the
strength of the damping and the dark acoustic oscillations at small scales. As a reference, we also include thermal-relic-WDM models, which are close to each
model in ETHOS. Right: Velocity dependence of the transfer cross-section per units mass (�T /m) for the different ETHOS models. Models ETHOS-1 to
ETHOS-3 have �T /m / v�4

rel for large relative velocities. For low velocities the cross sections can be as high as 100 cm2 g�1.

the outstanding small-scale problems of the MW satellites. Finally,
we present our summary and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are sum-
marised in Table 1. For all simulations we use the following cos-
mological parameters: ⌦m = 0.302, ⌦⇤ = 0.698, ⌦b = 0.046,
h = 0.69, �8 = 0.839 and ns = 0.967, which are consistent
with recent Planck data (Planck Collaboration et al. 2014; Spergel
et al. 2015). We study mainly five different DM models, which we
label CDM and ETHOS-1 to ETHOS-4. In the parameter space of
ETHOS, these models are represented by a specific transfer func-
tion (see left panel of Fig. 1 for the resulting linear dimensionless
power spectra), and a specific velocity-dependent transfer cross-
section for DM (see right panel of Fig. 1). Our discussion will
mostly focus on ETHOS-1 to ETHOS-3, which demonstrate the ba-
sic features of our ETHOS models. ETHOS-4 is a tuned model that
was specifically set up to address the small-scale issues of CDM
(the MS problem and the TBTF problem). We discuss this model
towards the end of the paper.

These models arise within the effective framework of ETHOS,
described in detail in ?, which we summarise in the following.
ETHOS provides a mapping between the intrinsic parameters (cou-
plings, masses, etc.) defining a given DM particle physics model,
and (i) the effective parameters controlling the shape of the linear
matter power spectrum, and (ii) the effective DM transfer cross sec-
tion (h�T i/m�); both at the relevant scales for structure formation.

Schematically:
n
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where the parameters on the left are the intrinsic parameters of the
dark matter model: m� is the mass of the dark matter particle, {gi}
represents the set of coupling constants, {hi} is a set of other inter-
nal parameters such as mediator mass {mi} and number of degrees
of freedom, and ⇠ = (TDR/TCMB)|z=0 is the present day DR to
CMB temperature ratio.

The effective parameters of the framework are on the right of
Eq. 1, which in all generality include the doublet {bn,�l} char-
acterising the evolution of dark radiation perturbations, while the
triplet {dn,m�, ⇠} determines the adiabatic sound speed of dark
matter. The latter is very small for non-relativistic dark matter,
thus, it has no impact on the evolution of dark matter perturba-
tions (except on very small scales, irrelevant for galaxy forma-
tion/evolution). On the other hand, since in this work we are only
interested on the evolution of dark matter perturbations, the param-
eters {bn,�l} can be neglected since they have very little impact
on the actual structure of the linear matter power spectrum. More
precisely, when the DR-DR interactions decouple later than the
DR-DM interactions, these terms should be taken into account but
they only affect scales at and smaller than that of the second DAO
peak in the linear power spectrum. This would introduce only mi-
nor corrections that can be neglected for the purpose of following
the non-linear evolution of structures. We are therefore left only
with the doublet {an,↵l}, which fully characterises the evolution
of the dark matter perturbations, with the set of l�dependent coeffi-
cients ↵l encompassing information about the angular dependence

MNRAS 000, 1–17 (2015)
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1) Physics affecting the DM transfer 
function (initial conditions)

2) Physics affecting the dynamics of 
structure formation (self-interaction)



But small scales are messy…
Is there anything we can do with large 

scales?
Let’s consider the CMB.
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Probing the dark matter transfer function: 
Cosmic microwave background

3/21/17Francis-Yan Cyr-Racine, Harvard 8

Pirsa: 13100098 Page 43/79

Radiation 
Pressure

Dark matter is needed to source the gravitational potential

Credits: W. Hu

Potential Well
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FIG. 6: CMB unlensed temperature (upper panel) and E po-
larization (lower panel) power spectra for four di↵erent PIDM
models with fint = 100%. We have taken ⇠ = 0.5. For com-
parison, we also show a standard ⇤CDMmodel with an equiv-
alent number of e↵ective neutrinos.

on PIDM models.

C. CMB Lensing

As the CMB photons free-stream from the last-
scattering surface to us, they encounter large DM struc-
tures which can deflect their path and rotate their po-
larization state. This CMB lensing (see [113] for a re-
view) by foreground matter structures has now been de-
tected at high statistical significance (⇠ 25�, [114]) and
can be used to study the distribution of matter through-
out the Universe. Since PIDM models generally predict
a modified matter distribution as compared to a pure
CDM model, CMB lensing can by itself provide useful
constraints on interacting DM scenarios.

The gravitational deflection potential �, of which the

gradient gives the lensing displacement vector on the sky,
is related to the gravitational potential perturbation  
projected along the line of sight in the n̂ direction, via

�(n̂) = �2

Z �⇤

0

d� (�n̂; ⌘0 � �)
�⇤ � �

��⇤
, (21)

where �⇤ is the comoving distance to the last scattering
surface and ⌘0 is the comoving size of the causal hori-
zon today. The lensing potential power spectrum can be
written as

C��
l = 16⇡

Z
dk

k
PR(k)|� (k)|2, (22)

where

� (k) =

Z �⇤

0

d�T (k; ⌘0 � �))jl(k�)
�⇤ � �

��⇤
, (23)

and where PR(k) is the primordial spectrum of comoving
curvature fluctuations. The transfer function T (k, ⌘) is
defined by  (k, ⌘) = T (k, ⌘)R(k), where R(k) stands
for the comoving curvature fluctuation.
We show in Fig. 7 the CMB lensing power spectrum for

di↵erent PIDM models. In the upper panel, we display
the spectra for increasing values of ⌃DAO. It should be
clear from this plot that the most extreme models with
⌃DAO & 10�3 are ruled out by current data if interacting
DM forms the totality of the DM. In the lower panel of
Fig. 7, we fix ⌃DAO = 10�3 but instead vary the fraction
of interacting DM. We observe that even a fraction as
small as 5% can have a sizable e↵ect on the lensing power
spectrum. This indicates that current and future CMB
lensing measurements could potentially be very sensitive
probes of nonstandard DM physics.
Lensing by foreground matter structure also distorts

the CMB temperature and polarization power spectra
presented in Fig. 6 above. Essentially, lensing acts to
smooth out the oscillatory structure of the spectra, fill-
ing in the troughs and damping the peaks. As we dis-
cussed above, since PIDM models generally predict dif-
ferent amount of lensing, the associated smoothing of the
CMB spectra provides yet another handle (albeit corre-
lated with other CMB signatures) to constrain interact-
ing DM. We illustrate lensed CMB spectra in Figs. 8 and
9 for increasing values of ⌃DAO and for fint = 1. Besides
the PIDM signatures discussed in section IVB, we ob-
serve that the TT and EE spectra display sharper peaks
and troughs in the damping tail as ⌃DAO is increased,
which is in line with our expectations that these models
should be less a↵ected by gravitational lensing. We also
note that the lensing signatures can obscure some of the
e↵ects discussed in section IVB, especially the enhance-
ment of the even acoustic peaks in the damping tail of
the temperature spectrum.
Taken as a whole, it is clear that the CMB and its lens-

ing by foreground matter structures provide an exquisite
probe of DM physics and of its possible interaction with

Linear regime: Cosmic microwave background

Cyr-Racine et al. 2013.
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FIG. 6: CMB unlensed temperature (upper panel) and E po-
larization (lower panel) power spectra for four di↵erent PIDM
models with fint = 100%. We have taken ⇠ = 0.5. For com-
parison, we also show a standard ⇤CDMmodel with an equiv-
alent number of e↵ective neutrinos.
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lensing measurements could potentially be very sensitive
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ferent amount of lensing, the associated smoothing of the
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lated with other CMB signatures) to constrain interact-
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9 for increasing values of ⌃DAO and for fint = 1. Besides
the PIDM signatures discussed in section IVB, we ob-
serve that the TT and EE spectra display sharper peaks
and troughs in the damping tail as ⌃DAO is increased,
which is in line with our expectations that these models
should be less a↵ected by gravitational lensing. We also
note that the lensing signatures can obscure some of the
e↵ects discussed in section IVB, especially the enhance-
ment of the even acoustic peaks in the damping tail of
the temperature spectrum.
Taken as a whole, it is clear that the CMB and its lens-

ing by foreground matter structures provide an exquisite
probe of DM physics and of its possible interaction with

Linear regime: Cosmic microwave background

Cyr-Racine et al. 2013.
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recombination rate is larger than the expansion rate of
the Universe. The DR eventually decouples from the
atomic DM and begin to free-stream across the Universe.
We note that the order and the dynamics of the di↵er-
ent important transitions of the dark plasma (recombina-
tion, onset of DR free-streaming, atomic DM drag epoch,
DM thermal decoupling, etc.) can be very di↵erent than
in the standard baryonic case. We refer the reader to
Ref. [47] for more details.

To retain generality and emphasize that the PIDM sce-
nario we are considering is quite general, we shall refer
to the massless U(1)D “dark photons” simply as DR. For
simplicity, we also denote the lightest fermion as “dark
electron” (massme) while the heaviest fermion is referred
to as “dark proton” (mass mp). We assume that these
two oppositely-charged components come in equal num-
ber such that the dark sector is overall neutral under the
U(1)D interaction. This model is characterized by five
parameters which are the mass of the dark atoms mD,
the dark fine-structure constant ↵D, the binding energy
of the dark atoms BD, the present-day ratio of the DR
temperature (TD) to the cosmic microwave background
temperature ⇠ ⌘ (TD/TCMB)|z=0, and the fraction of the
overall DM density contained in interacting DM (here,
dark atoms), fint ⌘ ⇢int/⇢DM, where ⇢DM = ⇢int + ⇢CDM

and where ⇢int is the energy density of the interacting DM
component. These parameters are subject to the consis-
tency condition mD/BD � 8/↵2

D � 1, which ensures that
the relationship me + mp � BD = mD is satisfied. We
note that if the visible and dark sectors were coupled
above the electroweak scale, we naturally expect ⇠ ⇠ 0.5
[66]. A smaller value would either require new degrees of
freedom in the visible sector or that the two sectors were
never in thermal equilibrium in the first place.

The evolution of the dark plasma is largely governed
by the opacity ⌧�1

D of the medium to DR. For the model
we considered, the main contributions1 to this opacity
are Compton scatterings of DR o↵ charged dark fermions
and Rayleigh scatterings o↵ neutral dark atoms, that is,

⌧�1
D = ⌧�1

Compton + ⌧�1
R , (1)

where

⌧�1
Compton = anADMxD�T,D

"
1 +

✓
me

mp

◆2
#
, (2)

and

⌧�1
R = anADM(1� xD)h�Ri

' 32⇡4anADM(1� xD)�T,D

✓
TD

BD

◆4

. (3)

Here, �T,D ⌘ 8⇡↵2
D/(3m2

e) is the dark Thomson cross
section, a is the scale factor describing the expansion

1 In this work, we neglect the small contribution to the opacity
from photoionization processes.

of the Universe, xD is the ionized fraction of the dark
plasma, nADM is the number density of dark atoms, �R

is the Rayleigh scattering cross section, and where the an-
gular bracket denotes thermal averaging. We note that
the second line of Eq. (3) is only valid if TD < BD. It
is out of the scope of this paper to discuss in detail the
evolution of the ionized fraction and of the DM temper-
ature. We refer the reader to Ref. [47] for a thorough
investigation of dark atom recombination and thermal
history.

B. ⇠ vs �Ne↵

We note that, as far as the background cosmological ex-
pansion is concerned, varying the temperature of the DR
in PIDM models is equivalent to changing the e↵ective
number of relativistic species (commonly parametrized in
the literature by �Ne↵) in ⇤CDM models according to
the correspondence

�Ne↵ $ 8

7

✓
11

4

◆4/3

⇠4. (4)

However, since the DR described by our parameter ⇠ af-
fects the evolution of cosmological fluctuations in a di↵er-
ent way than the neutrino-like relativistic species usually
parametrized by �Ne↵ (because our DR couples to DM
and is not always free-streaming), we emphasize that one
cannot blindly translate the known constraints on �Ne↵

from, say, Planck [71] to a bound on ⇠. In fact, as we dis-
cuss below, the bounds on ⇠ can be much more stringent
than the naive constraints one would obtain by translat-
ing the known limits on �Ne↵ using Eq. (4). Therefore,
we emphasize that the correspondence given in Eq. (4) is
only useful when comparing the cosmological expansion
history of PIDM models with that of standard ⇤CDM
models.

III. COSMOLOGICAL EVOLUTION

A. Dark Acoustic Oscillation Scale

Since a fraction of the DM forms a tightly-coupled
plasma in the early Universe, the evolution of cosmo-
logical fluctuations in the PIDM model departs signifi-
cantly from that of a standard ⇤CDM Universe. Indeed,
as Fourier modes enter the causal horizon, the DR pres-
sure provides a restoring force opposing the gravitational
growth of over densities, leading to the propagation of
dark acoustic oscillations (DAO) in the plasma. These
acoustic waves propagate until DR kinematically decou-
ples from the interacting DM component. Similar to the
baryon case, the scale corresponding to the sound hori-
zon of the dark plasma at kinetic decoupling remains im-
printed on the matter field at late times. This so-called

Cyr-Racine et al. 2013.
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a2=105 Mpc-1

CMB Lensing

Linear regime: Cosmic microwave background

arXiv:1610.02743

• The next frontier is to constrain subdominant DM component 



Let’s now focus on small, non-linear 
scales
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Simulations: Subhalo mass function

Vogelsberger, Zavala, Cyr-Racine +, arXiv:1512.05349

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)

500 kpc
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parameters that control the shape of the linear power spectrum are
related to more familiar scales in the initial power spectrum: the co-
moving diffusion (Silk) damping scale (rSD) and the DM comov-
ing sound horizon (rDAO). These are generic scales, which occur
in models where DM is coupled to relativistic particles in the early
Universe, i.e., they are not only a consequence of the specific parti-
cle physics scenario used here. Currently, or simulations only cover
the regime for which rDAO & rSD (“weak” DAOs); for an exam-
ple of a simulation in the strong DAOs regime, with rDAO � rSD,
see Buckley et al. (2014).

As a reference, the left panel of Fig. 1 also shows three WDM
power spectra for thermal relics, which are described by a sharp
cut-off (we follow Bode et al. 2001, with ⌫ = 1):

PWDM(k) = T 2
(k)PCDM(k), T (k) = (1 + (↵k)2)�5, (4)

where the ↵ parameter defines the cutoff scale in the initial power
spectrum and is related to the free-streaming of WDM particles.
The ↵ value can be associated with a generic thermal relic WDM
particle mass, mWDM, using the relation (Bode et al. 2001):

↵=
0.05

hMpc

�1

⇣mWDM

1 keV

⌘�1.15
✓

⌦WDM

0.4

◆0.15✓ h
0.65

◆1.3
⇣gWDM

1.5

⌘�0.29
,

(5)

where ⌦WDM is the WDM contribution to the density parameter,
and gWDM the number of degrees of freedom. It is conventional to
use 1.5 as the fiducial value for gWDM for the WDM particle. The
left panel of Fig. 1 shows also the WDM particle masses for the
three cases, which were chosen by eye to match the initial power
decline of the ETHOS models as well as the FoF halo mass function
(see Fig. 3 and discussion further down).

We note that the Lyman-↵ forest is sensitive to any sort of
small-scale cutoffs in the power spectrum; a feature that puts, for
example, tight constraints on the mass of thermal-relic-WDM parti-
cles (Viel et al. 2013). The acoustic oscillation (rDAO) and damping
(rSD) scales can therefore, in principle, be constrained via Lyman-
↵ forest data as well. Since the shape of the cutoff in our models
is very different from the exponential cutoff in WDM models, it is
thus necessary to perform detailed hydrodynamical simulations for
the models presented here in order to obtain appropriate Lyman-
↵ forest constraints. We will discuss this in a forthcoming work
(Zavala et al., in prep).

3 SIMULATIONS

We generate initial conditions at z = 127 within a 100h�1
Mpc

periodic box (our parent simulation) from which we select a MW-
size halo to be resimulated with a zoom technique. The transfer
functions for all DM models were generated with a modified ver-
sion of the CAMB code (Seljak & Zaldarriaga 1996; Lewis &
Challinor 2011), as described in Cyr-Racine et al. (2015). All ini-
tial conditions were generated with the MUSIC code (Hahn & Abel
2011). The uniform parent simulation is performed at a resolu-
tion of 10243 particles yielding a DM particle mass resolution of
7.8 ⇥ 10

7 h�1
M� and a spatial resolution (Plummer-equivalent

softening length) of ✏ = 2h�1
kpc. This is sufficient to resolve

haloes down to ⇠ 2.5 ⇥ 10

9 h�1
M� with about 32 particles. We

note that the mass and spatial resolution of this parent simulation
is slightly better than the simulations presented in Buckley et al.
(2014), which have a smaller simulation volume. The parent sim-
ulation presented here has therefore better statistics and also in-

Name mDM [M�] ✏ [pc] Nhr

level-1 2.756⇥ 104 72.4 444, 676, 320
level-2 2.205⇥ 105 144.8 55, 451, 880
level-3 1.764⇥ 106 289.6 7, 041, 720

Table 2. Simulation parameters of the selected MW-size halo. We list the
DM particle mass (mDM), the Plummer-equivalent softening length (✏),
and the number of high resolution particles (Nhr). The softening length is
kept fixed in physical units for z < 9. The number of high resolution parti-
cles refers to the CDM case and slightly varies for the other DM models.

Name M200,crit R200,crit Vmax Rmax Nsub

[1010 M�] [kpc] [km s�1] [kpc]

CDM 161.28 244.05 176.82 68.29 16108
ETHOS-1 160.47 243.64 178.12 62.58 590
ETHOS-2 164.70 245.75 181.49 63.72 971
ETHOS-3 163.36 245.09 180.60 64.37 1080
ETHOS-4 163.76 245.30 178.78 69.18 1366

Table 3. Basic characteristics of the MW-size halo formed in the different
DM models. We list the mass (M200,crit), radius (R200,crit), maximum
circular velocity (Vmax), radius where the maximum circular velocity is
reached (Rmax), and the number of resolved subhaloes within 300 kpc
(Nsub).

cludes more massive clusters. It contains 10 haloes with a virial
mass (M200,crit) above 10

14 h�1
M� at z = 0.

The galactic halo for resimulation was randomly selected from
a sample of haloes that have masses between 1.58⇥ 10

12
M� and

1.61 ⇥ 10

12
M�, which is in the upper range of current estimates

for the mass of the MW halo (see Fig. 1 of Wang et al. 2015).
This sample was created using only those MW-size haloes which do
not have another halo more massive than half their masses within
2h�1

Mpc (this is a criterion for isolation). We stress that we do
not consider a local group analog here in this first study. We have
simulated the selected halo at three different resolutions, level-3 to
level-1, which are summarised in Table 2. For these resimulations,
the softening length is fixed in comoving coordinates until z = 9,
and is then fixed in physical units until z = 0. The latter value is
quoted in Table 2. The number of high resolution particles refers to
the CDM simulation only; the other DM models produce slightly
different numbers. The most basic characteristics of the halo are
presented in Table 3 for the highest resolution simulations.

Self-scattering of DM particles was implemented into the
AREPO code (Springel 2010) following the probabilistic approach
described in Vogelsberger et al. (2012), which assumes that scat-
tering is elastic and isotropic. This implementation has previously
been used, in the context of standard SIDM (i.e. with the same
power spectrum as CDM), to constrain the self-interaction cross
section at the scale of the MW dwarf spheroidals (Zavala et al.
2013), predict direct detection signatures of self-interactions (Vo-
gelsberger & Zavala 2013), and study the impact on lensing sig-
nals (Vegetti & Vogelsberger 2014). It was also used to find
that self-interactions can leave imprints in the stellar distribution
of dwarf galaxies by performing the first SIDM simulation with
baryons presented in Vogelsberger et al. (2014a).
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Figure 1. Properties of the effective DM models relevant for structure formation. Left: Linear initial matter power spectra (�linear(k)2 = k3Plinear(k)/2⇡2)
for the different models (CDM and ETHOS models ETHOS-1 to ETHOS-4) as a function of comoving wavenumber k. The ETHOS models differ in the
strength of the damping and the dark acoustic oscillations at small scales. As a reference, we also include thermal-relic-WDM models, which are close to each
model in ETHOS. Right: Velocity dependence of the transfer cross-section per units mass (�T /m) for the different ETHOS models. Models ETHOS-1 to
ETHOS-3 have �T /m / v�4

rel for large relative velocities. For low velocities the cross sections can be as high as 100 cm2 g�1.

the outstanding small-scale problems of the MW satellites. Finally,
we present our summary and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are sum-
marised in Table 1. For all simulations we use the following cos-
mological parameters: ⌦m = 0.302, ⌦⇤ = 0.698, ⌦b = 0.046,
h = 0.69, �8 = 0.839 and ns = 0.967, which are consistent
with recent Planck data (Planck Collaboration et al. 2014; Spergel
et al. 2015). We study mainly five different DM models, which we
label CDM and ETHOS-1 to ETHOS-4. In the parameter space of
ETHOS, these models are represented by a specific transfer func-
tion (see left panel of Fig. 1 for the resulting linear dimensionless
power spectra), and a specific velocity-dependent transfer cross-
section for DM (see right panel of Fig. 1). Our discussion will
mostly focus on ETHOS-1 to ETHOS-3, which demonstrate the ba-
sic features of our ETHOS models. ETHOS-4 is a tuned model that
was specifically set up to address the small-scale issues of CDM
(the MS problem and the TBTF problem). We discuss this model
towards the end of the paper.

These models arise within the effective framework of ETHOS,
described in detail in ?, which we summarise in the following.
ETHOS provides a mapping between the intrinsic parameters (cou-
plings, masses, etc.) defining a given DM particle physics model,
and (i) the effective parameters controlling the shape of the linear
matter power spectrum, and (ii) the effective DM transfer cross sec-
tion (h�T i/m�); both at the relevant scales for structure formation.

Schematically:
n

m�, {gi}, {hi}, ⇠
o

!
n

{an,↵l}, {bn,�l}, {dn,m�, ⇠}
o

! Pmatter(k)

n

m�, {mi}, {gi}
o

!
(

h�T i30
m�

,
h�T i220
m�

,
h�T i1000

m�

)

,(1)

where the parameters on the left are the intrinsic parameters of the
dark matter model: m� is the mass of the dark matter particle, {gi}
represents the set of coupling constants, {hi} is a set of other inter-
nal parameters such as mediator mass {mi} and number of degrees
of freedom, and ⇠ = (TDR/TCMB)|z=0 is the present day DR to
CMB temperature ratio.

The effective parameters of the framework are on the right of
Eq. 1, which in all generality include the doublet {bn,�l} char-
acterising the evolution of dark radiation perturbations, while the
triplet {dn,m�, ⇠} determines the adiabatic sound speed of dark
matter. The latter is very small for non-relativistic dark matter,
thus, it has no impact on the evolution of dark matter perturba-
tions (except on very small scales, irrelevant for galaxy forma-
tion/evolution). On the other hand, since in this work we are only
interested on the evolution of dark matter perturbations, the param-
eters {bn,�l} can be neglected since they have very little impact
on the actual structure of the linear matter power spectrum. More
precisely, when the DR-DR interactions decouple later than the
DR-DM interactions, these terms should be taken into account but
they only affect scales at and smaller than that of the second DAO
peak in the linear power spectrum. This would introduce only mi-
nor corrections that can be neglected for the purpose of following
the non-linear evolution of structures. We are therefore left only
with the doublet {an,↵l}, which fully characterises the evolution
of the dark matter perturbations, with the set of l�dependent coeffi-
cients ↵l encompassing information about the angular dependence
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for the different models (CDM and ETHOS models ETHOS-1 to ETHOS-4) as a function of comoving wavenumber k. The ETHOS models differ in the
strength of the damping and the dark acoustic oscillations at small scales. As a reference, we also include thermal-relic-WDM models, which are close to each
model in ETHOS. Right: Velocity dependence of the transfer cross-section per units mass (�T /m) for the different ETHOS models. Models ETHOS-1 to
ETHOS-3 have �T /m / v�4
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the outstanding small-scale problems of the MW satellites. Finally,
we present our summary and conclusions in Section 5.

2 EFFECTIVE MODELS

The different DM models that we investigate in this paper are sum-
marised in Table 1. For all simulations we use the following cos-
mological parameters: ⌦m = 0.302, ⌦⇤ = 0.698, ⌦b = 0.046,
h = 0.69, �8 = 0.839 and ns = 0.967, which are consistent
with recent Planck data (Planck Collaboration et al. 2014; Spergel
et al. 2015). We study mainly five different DM models, which we
label CDM and ETHOS-1 to ETHOS-4. In the parameter space of
ETHOS, these models are represented by a specific transfer func-
tion (see left panel of Fig. 1 for the resulting linear dimensionless
power spectra), and a specific velocity-dependent transfer cross-
section for DM (see right panel of Fig. 1). Our discussion will
mostly focus on ETHOS-1 to ETHOS-3, which demonstrate the ba-
sic features of our ETHOS models. ETHOS-4 is a tuned model that
was specifically set up to address the small-scale issues of CDM
(the MS problem and the TBTF problem). We discuss this model
towards the end of the paper.

These models arise within the effective framework of ETHOS,
described in detail in ?, which we summarise in the following.
ETHOS provides a mapping between the intrinsic parameters (cou-
plings, masses, etc.) defining a given DM particle physics model,
and (i) the effective parameters controlling the shape of the linear
matter power spectrum, and (ii) the effective DM transfer cross sec-
tion (h�T i/m�); both at the relevant scales for structure formation.

Schematically:
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where the parameters on the left are the intrinsic parameters of the
dark matter model: m� is the mass of the dark matter particle, {gi}
represents the set of coupling constants, {hi} is a set of other inter-
nal parameters such as mediator mass {mi} and number of degrees
of freedom, and ⇠ = (TDR/TCMB)|z=0 is the present day DR to
CMB temperature ratio.

The effective parameters of the framework are on the right of
Eq. 1, which in all generality include the doublet {bn,�l} char-
acterising the evolution of dark radiation perturbations, while the
triplet {dn,m�, ⇠} determines the adiabatic sound speed of dark
matter. The latter is very small for non-relativistic dark matter,
thus, it has no impact on the evolution of dark matter perturba-
tions (except on very small scales, irrelevant for galaxy forma-
tion/evolution). On the other hand, since in this work we are only
interested on the evolution of dark matter perturbations, the param-
eters {bn,�l} can be neglected since they have very little impact
on the actual structure of the linear matter power spectrum. More
precisely, when the DR-DR interactions decouple later than the
DR-DM interactions, these terms should be taken into account but
they only affect scales at and smaller than that of the second DAO
peak in the linear power spectrum. This would introduce only mi-
nor corrections that can be neglected for the purpose of following
the non-linear evolution of structures. We are therefore left only
with the doublet {an,↵l}, which fully characterises the evolution
of the dark matter perturbations, with the set of l�dependent coeffi-
cients ↵l encompassing information about the angular dependence
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Figure 7. Spherically averaged density profiles of the Milky-Way-size
haloes for the four different DM models. The non-CDM models have only
a mild impact on the central density profile where self-interactions lead to
the formation of a small core (⇠ 2 kpc), with a size that correlates with the
amplitude of the scattering cross section. The damping in the initial power
spectrum for these models (see left panel of Fig. 1) has only a secondary
impact on the density profiles of MW-size haloes.

enough, they could in fact be much weaker than currently assumed
within CDM, which would lead to different conclusions. Models
ETHOS-2 and ETHOS-3 show a smaller but still significant reduc-
tion of the abundance of subhaloes which spans the range between
the CDM result and the observed satellite population. The right
panel of Fig. 8 shows the same quantity on a logarithmic scale.

Finally, we show the (radially averaged) internal structure of
subhaloes in Fig. 9. Here we select for each model the 15 subhaloes
with the largest present-day Vmax values and plot the distribution
of density profiles (left panel) and circular velocity profiles (right
panel). The thick lines show the median of the distribution, whereas
the shaded region shows the lower and upper envelopes. We only
consider subhaloes that are within 300 kpc halocentric distance.
The right panel also contains observational data from nine of the
classical MW dSphs taken from Wolf et al. (2010). The distribu-
tion of circular velocities for the CDM model clearly shows the
well-known TBTF problem, while the density profiles points to the
also well-known CC problem: if Fornax is cored for instance, the
size of its DM core is between 0.6 and 1.8 kpc (Amorisco et al.
2013), which cannot be accommodated in the CDM model. The
non-CDM models on the other hand show clearly reduced (density)
circular velocity profiles, which are seemingly too low compared
to what is required by the data. We show below that the combina-
tion of self-interactions and the damping in the initial power spec-
trum is responsible for this strong reduction. This is quite differ-
ent from the results shown in Vogelsberger et al. (2012), where we
only considered the effect of self-interactions. The fact that mod-
els ETHOS-1 to ETHOS-3 do not fit the data is unsurprising since
those models were not specifically tuned to reproduce the subhalo
statistics of the MW. They were rather picked out of a large parti-

cle physics parameter space. This result however shows that it can
actually be quite difficult to predict a priori the combined impact
of self-scattering and primordial damping on the highly non-linear
evolution that leads to the internal structure of subhaloes. It also
shows the potential of the MW satellites data to constrain the pa-
rameter space of our effective framework.

We should note that the severity of the TBTF problem in the
MW depends on the MW halo mass. For low halo masses . 8 ⇥
10

11M�, the problem disappears (e.g. Wang et al. 2012). Since
we are using a halo with a mass of 1.6 ⇥ 10

12M�, the TBTF is
quite clear in our CDM simulation. This dependence on the halo
mass has been discussed elsewhere. For the purpose of our work,
we show a case where the problem is clear, and focus on studying
the DM models that can alleviate it.

4.3 Disentangling the impact of late DM self-interactions
versus early DM-DR interactions

In this section we try to disentangle the impact of the damping
of the initial power spectrum and the late-time effect of DM self-
interactions. To this end we reran the MW halo for models ETHOS-
1 to ETHOS-3, at resolution level-2, which has converged reason-
ably in the inner structure of the most massive subhaloes as can
be see in Fig. 10, where we compare level-1 (dashed) and level-2
(solid). For these resimulations we either only consider a modifica-
tion to the power spectrum or only self-interactions. We can then
contrast these two variations of each model with its full version
and see which new DM physics is responsible for which effect.
These different variations are summarised in Table 4, and are la-
belled ETHOS-X-sidm and ETHOS-X-power, where X = 1, 2, 3.

For the ETHOS-X-sidm models we only consider self-
interactions and use the same transfer function as for the CDM
simulation. The ETHOS-X-power simulations, on the other hand,
do not include self interactions, but use the corresponding damped
initial power spectra. We are specifically interested in the abun-
dance and the internal structure of the subhalo population at z = 0.
In Fig. 10 we show the subhalo mass function as a function of
Vmax (left panel) and the circular velocity profile for the top 15

subhaloes (right panel) for the different reduced models (each in a
row as shown in the legends). The most striking impact can be seen
when looking at the ETHOS-X-sidm results, which do not include
the damping of the initial power spectrum at small scales. Self-
interactions do not affect the abundance of subhaloes, at least at the
amplitude of the cross sections we consider here (see also Vogels-
berger et al. 2012). The values of Vmax are also not affected signif-
icantly compared to CDM, it is only within rmax where the effect
of DM collisions is clear. The larger the cross section, the stronger
the reduction of the enclosed mass within rmax. We note that the
dispersion in the distribution of the subhalo densities is quite small
in these reduced ETHOS-X-sidm models. This is because the max-
imum central core density cannot be lower than the density at rmax,
thus subhaloes with a similar Vmax and rmax will develop a sim-
ilar core density. Modifying the initial power spectrum naturally
reduces the subhalo abundance and creates a broad dispersion in
the distribution of velocity curves of the most massive subhaloes.
This distribution is shifted down towards lower densities. These
properties are ultimately connected to the (mass-dependent) delay
in the formation of haloes caused by the primordial damping to the
power spectrum. Therefore a cutoff in the primordial power spec-
trum creates a dispersion in the circular velocity profiles of haloes
with sizes around the cutoff scale. This might help to alleviate the
problem of diversity of rotation curves present in dwarf galaxies
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• Unlike CDM, SIDM can thermalize and equilibrate with 
the baryons. 3
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FIG. 2: Left two panels show the SIDM fits to the rotation curves of NGC 6503 and UGC 128. They asymptote to Vf ⇡ 130 km/s in the
outer parts, but their inner rotation curves are very different. The right panel show the SIDM fit to a highly luminous galaxy, NGC 2903. The
total fit is displayed in red and it includes contributions from the SIDM halo (blue solid), stars (magenta dashed), gas (magenta dot-dashed),
and bulge (magenta long-dashed). The predictions of the corresponding CDM halo (dotted) and the SIDM halo neglecting the influence of the
baryons (asterisk) are also shown.

obtained excellent fits overall, with �2/dof < 1 for 23 galax-
ies (DDO 52, 154, 87 126; UGC 128, 5005, 11707, 4483,
3371, 5721, 12506, 1281; UGCA 442; NGC 2366, 7331,
2403, 3109, 1560, 2903, 3198; F583-1, F579-V1, M33), and
�2/dof < 2 for the rest (UGC 2841, 5750; NGC 6503, F571-
8, F563-V2, DDO 133, IC 2574). In Figs. 2 and 3, we show
the fits to some of the most extreme examples highlighted
in [15]1. For each galaxy, we compute the thin disk param-
eters (⌃

0

, Rd) that best match the rotation curves of the stellar
disk in the literature, given a value of the mass-to-light ratio
(⌥⇤). In computing ⇢

iso

, we have neglected the potential of
the gaseous disk and stellar bulge, which is a good approxi-
mation for the fits shown here. In our fits, the outer halo V

max

is essentially set by the measured Vf and the freedom in the
fits is primarily due to ⌥⇤ and the scatter allowed in the con-
centration of the outer halo.

NGC 6503 [42] and UGC 128 [43] clearly illustrate the di-
verse features in the rotation curves caused by the baryon dis-
tribution in Fig. 2. Both galaxies have Vf ⇡ 130 km/s, but
their inner rotation curves are very different. For NGC 6503,
the circular velocity increases sharply in the inner regions and
reaches its asymptotic value around 5 kpc; in UGC 128, it
increases very mildly and reaches Vf at 20 kpc. Despite the
dramatic differences, the SIDM halo with median concentra-
tion provides a remarkable fit to both galaxies. NGC 6503
is a high surface brightness galaxy and its inner gravitational
potential is dominated by the stellar disk, which contributes
significantly to the observed V

cir

. Moreover, the inner SIDM
(isothermal) halo density in the presence of the disk is al-
most an order of magnitude larger than when neglecting the
influence of the disk, which boosts the halo contribution at
V
cir

(2 kpc) from 20 to 60 km/s. In contrast, the stellar disk

1 In the Appendix, we show the fits for the 24 other galaxies.

has a negligible effect on the SIDM halo of UGC 128.
It is interesting to note that in NGC 6503 the rotation curve

becomes flat at r ⇡ 3 kpc, which implies that the total den-
sity profile scales as a power-law in radius, with index close
to �2, from inner regions dominated by the disk to outer re-
gions dominated by dark matter. Thus, the thermalization of
dark matter in SIDM models provides a natural mechanism for
understanding the long-standing puzzle of the disk-halo con-
spiracy [35]. This power-law behavior of the total mass den-
sity is prevalent in large spiral and elliptical galaxies [44, 45].
We show the SIDM fit to the rotation curve of massive spiral
galaxy NGC 2903 [11] in right panel of Fig. 2 as an example.

In Fig. 3, we show SIDM fits for UGC 5721 [46, 47], NGC
1560 [48], and UGC 5750 [8, 43, 49, 50]. All have similar
Vf ⇡ 80 km/s, but the shapes of the rotation curves are very
different in the inner regions. UGC 5721 and UGC 5750 are
at opposite extremes for the rotation curve diversity in this
mass range. Despite the diversity, the SIDM halo model pro-
vides an impressive fit to the rotation curves. We find that
NGC 1560 has a median halo, UGC 5721 has a denser halo,
and UGC 5750 has an underdense halo, but all within 2� of
the median expectation. The observed V

cir

(2 kpc) is close to
20 km/s for UGC 5750, while the corresponding CDM halo
has V

cir

(2 kpc) ⇡ 30 km/s even with a concentration 2�
lower than the median value. The effect of the disk is most
significant in UGC 5721, resulting in a SIDM halo similar

to the CDM one and a flat V
cir

even at 2 kpc. The effect
becomes mild in NGC 1560 and negligible in UGC 5750,
consistent with their luminosities. We have further checked
that UGC 5721 can also be fit with a 1.5� higher c

200

value
and M

200

= 6 ⇥ 10

10M�, and UGC 5720 with a 1.5� lower
c
200

value and M
200

= 8 ⇥ 10

10M�. This is due to a mild
c
200

–M
200

degeneracy.
V. Diversity from uniformity. The diversity problem is

solved by a combination of features in ⇤SIDM that are not
separate pieces to be tuned but instead arise from the require-
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• So far, we have focused on making structure-formation 
predictions in relevant dark matter models. 
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Figure 4-7. The landscape of dark matter candidates [from T. Tait].

Figure 4-8. The range of dark matter candidates’ masses and interaction cross sections with a nucleus of
Xe (for illustrative purposes) compiled by L. Pearce. Dark matter candidates have an enormous range of
possible masses and interaction cross sections.

Community Planning Study: Snowmass 2013
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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well
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• How do we infer the physics of dark matter from observations? 
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A classification of dark matter 
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formation properties.
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• ETHOS allows the classification of dark matter theories 
according to their structure formation properties rather 
than their intrinsic particle properties. 
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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well
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constrained at the same time. 
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models using a simple parametrization.

IV. ETHOS: MAPPING PARTICLE MODELS TO STRUCTURE FORMATION SCENARIOS

In the standard cold DM paradigm, DM is assumed to be non-relativistic and to interact primarily via the grav-
itational force. These simple hypotheses have been extremely successful at explaining the structure of the Universe
on large scales. However, we must keep in mind that this success does not necessarily preclude the existence of
nontrivial DM microphysics that could a↵ect structure formation at smaller scales, where these hypotheses remain
untested. Indeed, causality dictates that new non-gravitational interactions in the DM sector can only modify the
matter distribution on small scales, leaving large scales intact. Many models have been proposed that either allow
for DM self-interactions inside halos at late times, or for interactions between DM and other particles in the early
Universe, or both (see Section I and references therein). An immediate di�culty in exploring these models is that
structure formation on small scales is highly nonlinear, requirying expensive high-resolution simulations in order to
make clear predictions that can be compared with observations. The cost of these simulations renders nearly impossi-
ble the task of a systematic exploration of all DM models that lead to modified small-scale structures. To address this
situation, we develop here an “E↵ective THeory Of Structure formation” (ETHOS), in which the DM microphysics is
systematically mapped to e↵ective parameters that directly control astrophysical structure formation. These e↵ective
parameters fully describe the linear evolution of the growth of structures and provide a convenient parameterization
for DM self-interactions. These two ingredients can then serve as the input for simulations to follow the growth of
structures in the non-linear regime. The advantage of developing ETHOS is clear: all DM particle models that map to
a given e↵ective ETHOS model can be constrained at the same time by comparing a single simulation of the e↵ective
ETHOS model with observations at no extra computational cost.

In section II, we have performed a detailed analysis of the Boltzmann equation governing the evolution of DM
(including DM dark radiation interactions and DR self-interactions), and have determined that the structure of the
linear matter power spectrum can be entirely determined (up to second-order e↵ects) by a set of opacity and angular
coe�cients given by

n
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�
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o

. (105)

Moreover, we have seen that, to a good approximation, the subset
�

!DR, {an,↵l

} is largely responsible for setting the
broad structure of the linear matter power spectrum, with the other parameters providing relatively small corrections.
The set of l�dependent coe�cients ↵

l

encompass information about the angular dependence of the DM-DR scattering
cross section, whereas a

n

are the coe�cients of the power-law expansion in temperature (redshift) of the DM drag
opacity caused by the DM-DR interaction. In section III, we have introduced a simple parametrization for the DM
self-interaction cross section based on averages of the transfer cross section evaluated at a few velocities vM relevant to
key astrophysical objects (dwarf galaxies, Milky-Way-size galaxies, and galaxy clusters). Taken together, the e↵ective
parameters describing a given ETHOS model are then

⌅ETHOS =

(

!DR, {an,↵l

},
n h�

T

i
vMi

m
�

o

)

, (106)

where we have allowed an arbitrary number of velocity reference points v
Mi . From the perspective of the structure

formation theory, two models having identical e↵ective parameters in ETHOS would yield universes populated by
statistically identical DM structures. The above ETHOS parametrization thus allows the classification of DM theories
with respect to their structure formation properties, instead of their intrinsic particle properties. One might object
that the mapping between particle theories and ETHOS scenarios is never exact since distinct DM models will always
make slightly di↵erent predictions. However, the nonlinear nature of the evolution of small-scale structures is very
e↵ective at erasing the memory of small di↵erences in the linear power spectrum [74, 104], hence making the mapping
quite e↵ective at classifying DM models in broad categories.

As a first application of the ETHOS framework, we present in a companion paper [74] high-resolution simulations
of a few ETHOS models characterized by non-vanishing values of a4 and ↵

l�2 = 3/2, corresponding to the particle
physics model described in Section II F 1 (a massive DM particle interacting with a massless neutrino-like fermion
via a new massive mediator). This application has the objective of using ETHOS to address at least two of the
main challenges of the cold DM model regarding the DM distribution in the Milky Way, namely the missing satellite
problem and the too big to fail problem. We stress however, that the scope of ETHOS goes beyond the cold DM
challenges. It is a framework that generalizes structure formation to include viable DM phenomenology, o↵ering a
new and powerful tool to explore new DM physics.
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• In the first paper, we are primary 
concerned with dark matter having 
significant interactions with 
relativistic species.

• These models are well-motivated in 
the context of self-interacting dark 
matter.

• These models are characterized by a 
non-CDM matter power spectrum 
and self-interaction at late times 
inside halos.
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respectively. We note that the DR shear perturbation is given by �DR(k, ⌧) = ⇧DR,2(k, ⌧)/2. In practice however, it
is much simpler to first integrate Eq. (50) with respect to q before solving the di↵erential equations for the di↵erent
l-moments. Indeed, the left-hand side of Eq. (50) can straightforwardly be expressed in terms of the physical DR

variables by multiplying it by
R

dq q3f
(0)
DR(q), performing the q integration, and dividing the result by

R

dq q3f
(0)
DR(q).

However, since the matrix element coe�cients A
l

appearing on the right-hand side of Eq. (50) depend on momentum,
the collision term cannot in general be expressed directly in terms of the physical DR variables7. In the present work,
we assume that the DR spectrum remains exactly thermal throughout the evolution of the Universe, which immediately
implies that the ⌫

l

variables must be independent of q. For models where DM is in kinetic equilibrium with the DR
at early times, this thermal approximation is extremely good since the large scattering rate appearing in Eq. (50)
suppresses the q-dependence of the ⌫

l

variables. For instance, frequent scattering events set ⌫1(k, ⌧) = (4/3)iv
�

and
⌫
l�2(k, ⌧) = 0 at early times, independently of q. As the scattering rate becomes comparable to the Hubble expansion
rate, the DR perturbation variables ⌫

l

can develop a small q-dependence of the order of the DM to DR entropy ratio.
In the following, we neglect this small correction since it has a negligible impact on the DM distribution at late times.
Applying to the right-hand side the same operations that we performed on the left-hand side of Eq (50) leads to the
following hierarchy of equations

�̇DR +
4

3
✓DR � 4�̇ = 0, (53)

✓̇DR + k2(�DR � 1

4
�DR)� k2 = ̇DR�DM (✓DR � ✓
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), (54)
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2l + 1
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l

̇DR�DR) ⇧DR,l

, (55)

where ̇DR�DM is the DR opacity to DM scattering
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DR(p) [A0(p)�A1(p)] ,

(56)
where ⇣ = 1 for bosonic DR and ⇣ = 7/8 for fermionic DR, and where ↵

l

are l-dependent coe�cients that encompass
information about the angular dependence of the DM-DR scattering cross section. They are given by

↵
l

⌘
R
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(0)
DR(p) [A0(p)�A

l

(p)]
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Similarly, ̇DR�DR is the DR opacity to self-scattering, which we write as

̇DR�DR = �a

✓

⇣⇡4T 4
DR

15

◆�1 Z

dp p3f
(0)
DR(p)⇤�̃�̃$�̃�̃

(p) (58)

and where we define the angular coe�cients for DR-DR scattering as

�
l

⌘
R
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(p) (1�G
l

(p))
R
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. (59)

We thus observe that the particle physics details of an interacting DM and DR model only enter through the opacity
functions ̇DR�DM and ̇DR�DR, and through the angular coe�cients ↵

l

and �
l

.

E. Dark matter equations

1. Temperature and sound speed evolution

Substituting the zeroth order collision term given in Eq. (35) into the evolution equation for the DM temperature
(Eq. (17))

dT
�

d⌧
+ 2HT

�

� �heat(TDR) (TDR � T
�

) = 0 , (60)

7
In the CMB case, the Thomson scattering matrix element is independent of momentum and the collision term can exactly be expressed

in terms of physical variables.
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constant and A1 = 0), we retrieve the familiar result ̇baryons = (4⇢
�

/3⇢baryons)̇� . For a more general interaction, we
see that the relation between the DR opacity ̇DR�DM and the DM drag opacity ̇

�

will not assume such a simple
form. In summary, the DM equations take the form
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+ ✓
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� 3�̇ = 0, (69)
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+H✓
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� ✓DR] . (70)

We observe that the details of the DM particle model only enter through the functions ̇
�

and c2
�

. It is thus clear that
two models predicting the same values for these functions will lead to a very similar structure formation scenarios.
This is the basic idea behind the ETHOS framework.

F. A general procedure for computing the linear matter power spectrum

In the previous sections, we have presented a detailed derivation of the cosmological perturbation equations for a
model in which non-relativistic DM couples to a relativistic component via the process ��̃ ! ��̃. While the above
calculation is rather technical, it suggests a simple recipe to derive the required system of equations:

1. For the process ��̃ ! ��̃, compute the spin-summed matrix element squared and evaluate it at t = 2p2(1� µ̃)
and s = m2

�

+ 2pm
�

, where p is the momentum of the incoming DR and µ̃ is the cosine of the angle between
the incoming and outgoing DR particle.

2. Compute the A
l

coe�cients using the projection integral
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. (71)

3. Compute ̇DR�DM and ̇
�

using Eqs. (56) and (68), respectively. Compute the angular coe�cients ↵
l

using
Eq. (57).

4. If relevant for the model at hand, compute the opacity ̇DR�DR and the �
l

coe�cients using Eqs. (58) and (59),
respectively.

5. Solve Eq. (60) to obtain the DM temperature evolution. Compute the DM adiabatic sound speed c2
�

using
Eq. (63).

6. Solve Eqs. (53)-(55), (69), and (70) using a standard Boltzmann solver in order to obtain the matter power
spectrum.

This procedure is straightforward but is not fully amenable to a simple numerical implementation since one would
need to code the specific functions ̇DR�DM, ̇DR�DR, �, and �heat for each model. While this is in principle possible,
one can further simplify the computation by noting that the opacities and heating rate are often power law functions
of the temperature (or redshift). This behavior occurs because the matrix elements entering the collision integrals are
often themselves power laws of momentum (see e.g. Eq. (36)). We can then write
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where a
n

, b
n

, and d
n

are constants with units of inverse length, h is the dimensionless Hubble constant h =
H0/(100 km/s/Mpc), ⌦

�

and ⌦DR are respectively the DM and DR densities in units of the critical density of
the Universe, and where we have introduced the dimensionless functions x

�

(z) and xDR�DR(z) to take into account
possible departures from a pure power-law behavior in some models8. In many instances, the physics responsible for

8
A good example of deviation from pure power-law scaling occurs in the atomic dark matter model at the epoch of dark recombination

[49]. Even in this case however, the opacities can generally still be approximated by a (steep) power law close the DM drag epoch.
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constant and A1 = 0), we retrieve the familiar result ̇baryons = (4⇢
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/3⇢baryons)̇� . For a more general interaction, we
see that the relation between the DR opacity ̇DR�DM and the DM drag opacity ̇
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We observe that the details of the DM particle model only enter through the functions ̇
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and c2
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. It is thus clear that
two models predicting the same values for these functions will lead to a very similar structure formation scenarios.
This is the basic idea behind the ETHOS framework.

F. A general procedure for computing the linear matter power spectrum

In the previous sections, we have presented a detailed derivation of the cosmological perturbation equations for a
model in which non-relativistic DM couples to a relativistic component via the process ��̃ ! ��̃. While the above
calculation is rather technical, it suggests a simple recipe to derive the required system of equations:

1. For the process ��̃ ! ��̃, compute the spin-summed matrix element squared and evaluate it at t = 2p2(1� µ̃)
and s = m2
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3. Compute ̇DR�DM and ̇
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using Eqs. (56) and (68), respectively. Compute the angular coe�cients ↵
l

using
Eq. (57).

4. If relevant for the model at hand, compute the opacity ̇DR�DR and the �
l

coe�cients using Eqs. (58) and (59),
respectively.

5. Solve Eq. (60) to obtain the DM temperature evolution. Compute the DM adiabatic sound speed c2
�

using
Eq. (63).

6. Solve Eqs. (53)-(55), (69), and (70) using a standard Boltzmann solver in order to obtain the matter power
spectrum.

This procedure is straightforward but is not fully amenable to a simple numerical implementation since one would
need to code the specific functions ̇DR�DM, ̇DR�DR, �, and �heat for each model. While this is in principle possible,
one can further simplify the computation by noting that the opacities and heating rate are often power law functions
of the temperature (or redshift). This behavior occurs because the matrix elements entering the collision integrals are
often themselves power laws of momentum (see e.g. Eq. (36)). We can then write
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are constants with units of inverse length, h is the dimensionless Hubble constant h =
H0/(100 km/s/Mpc), ⌦
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and ⌦DR are respectively the DM and DR densities in units of the critical density of
the Universe, and where we have introduced the dimensionless functions x
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(z) and xDR�DR(z) to take into account
possible departures from a pure power-law behavior in some models8. In many instances, the physics responsible for
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A good example of deviation from pure power-law scaling occurs in the atomic dark matter model at the epoch of dark recombination

[49]. Even in this case however, the opacities can generally still be approximated by a (steep) power law close the DM drag epoch.
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constant and A1 = 0), we retrieve the familiar result ̇baryons = (4⇢
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We observe that the details of the DM particle model only enter through the functions ̇
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. It is thus clear that
two models predicting the same values for these functions will lead to a very similar structure formation scenarios.
This is the basic idea behind the ETHOS framework.

F. A general procedure for computing the linear matter power spectrum

In the previous sections, we have presented a detailed derivation of the cosmological perturbation equations for a
model in which non-relativistic DM couples to a relativistic component via the process ��̃ ! ��̃. While the above
calculation is rather technical, it suggests a simple recipe to derive the required system of equations:

1. For the process ��̃ ! ��̃, compute the spin-summed matrix element squared and evaluate it at t = 2p2(1� µ̃)
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using Eqs. (56) and (68), respectively. Compute the angular coe�cients ↵
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using
Eq. (57).

4. If relevant for the model at hand, compute the opacity ̇DR�DR and the �
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coe�cients using Eqs. (58) and (59),
respectively.

5. Solve Eq. (60) to obtain the DM temperature evolution. Compute the DM adiabatic sound speed c2
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using
Eq. (63).

6. Solve Eqs. (53)-(55), (69), and (70) using a standard Boltzmann solver in order to obtain the matter power
spectrum.

This procedure is straightforward but is not fully amenable to a simple numerical implementation since one would
need to code the specific functions ̇DR�DM, ̇DR�DR, �, and �heat for each model. While this is in principle possible,
one can further simplify the computation by noting that the opacities and heating rate are often power law functions
of the temperature (or redshift). This behavior occurs because the matrix elements entering the collision integrals are
often themselves power laws of momentum (see e.g. Eq. (36)). We can then write

̇DR�DM = �(⌦
�

h2)x
�

(z)
X

n

a
n

✓

1 + z

zD

◆

n

, ̇
�

= �(⌦DRh
2)x

�

(z)
X

n

✓

2 + n

3

◆

a
n

(1 + z)n+1

znD
, (72)

̇DR�DR = �(⌦DRh
2)xDR�DR(z)

X

n

b
n

✓

1 + z

zD

◆

n

, �heat = (⌦DRh
2)x

�

(z)
X

n

d
n

(1 + z)n+1

znD
(73)

where a
n

, b
n

, and d
n

are constants with units of inverse length, h is the dimensionless Hubble constant h =
H0/(100 km/s/Mpc), ⌦
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and ⌦DR are respectively the DM and DR densities in units of the critical density of
the Universe, and where we have introduced the dimensionless functions x
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possible departures from a pure power-law behavior in some models8. In many instances, the physics responsible for
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A good example of deviation from pure power-law scaling occurs in the atomic dark matter model at the epoch of dark recombination

[49]. Even in this case however, the opacities can generally still be approximated by a (steep) power law close the DM drag epoch.
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V. SIMPLE EXAMPLE WITH WHITE NOISE POWER SPECTRUM

Let us consider a simple example where we have a perfect PSF and uncorrelated pixel noise, that is,

WR(x� y) = �(x� y), C�1

N�
(x,x0) =

1

�2

N�

�(x� x

0). (45)

Let us assume a Gaussian source

S̄�(u) =
F̄�

2⇡r2
s

e
� (u�u

s

)

2

2r2
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where F̄� is the source flux, r
s

is the size of the source, and u

s

is the central position of the source. The gradient of
the source is then
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Let us take the smooth lens to be a singular isothermal sphere centered at the origin
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where R
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V. SIMPLE EXAMPLE WITH WHITE NOISE POWER SPECTRUM

Let us consider a simple example where we have a perfect PSF and uncorrelated pixel noise, that is,
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FIG. 1. Left panel : Transfer function T (k) ⌘ PETHOS(k)/PCDM(k) for four di↵erent exponents n parametrizing the redshift
dependence of the DM drag opacity ̇� = �(⌦DRh

2)an((2 + n)/3)(1 + z)n+1/znD. The values of an are chosen such that all
models have the same DM drag epoch zdrag, which we define via the criterion �̇�(zdrag) = H(zdrag). The actual values used
are {a1, a2, a3, a4} = {2.75, 1.09 ⇥ 101, 4.30 ⇥ 101, 1.97 ⇥ 102} Mpc�1. All models assumes !DR = 1.35 ⇥ 10�6 , ↵l = 1, and
bn = 0. For completeness, we also used ⇠ = 0.5, m� = 10 GeV, and dn = an, but the results shown above are insensitive to
these specific choices. Right panel : Dark matter drag visibility function for the same models as the left panel. The DM drag
visibility function is essentially the probability distribution function for the time at which a DM particle last scatter o↵ DR.

G. Shape of the linear matter power spectrum

In previous sections, we have established that the shape and amplitude of the linear matter power spectrum of
models where DM couples to a relativistic component can entirely be described in terms of a set of e↵ective ETHOS
parameters (in addition, of course, to the standard ⇤CDM parameters). In this section, we illustrate the impact of
di↵erent choices of these parameters on the linear matter power spectrum, focusing primarily on the combination
{a

n

,↵
l

}.
The left panel of Fig. 1 illustrates the matter transfer function T (k) ⌘ PETHOS(k)/PCDM(k) for four di↵erent

exponents n parametrizing the redshift dependence of the DM and DR opacities. The models are normalized such
that they all have the same DM drag epoch zdrag which we define via the criterion �̇

�

(zdrag) = H(zdrag). All other
parameters are kept fixed as indicated in the figure caption. We observe that as n is increased, the frequency of
dark acoustic oscillations (DAO) increases and the transfer function begins departing from its CDM value at larger
wavenumbers (smaller scales). This is due to the faster decoupling timescale associated with larger values of n. We
illustrate this in the right panel of Fig. 1 where we display the DM drag visibility function �̇

�

e�� for the same
models as in the left panel. We observe that a larger value of the exponent n corresponds to a narrower DM drag
visibility function. Since ̇

�

/H / (1+z)n, a larger value of n indeed implies a faster transition from the tightly-coupled
regime ̇

�

/H � 1 to the decoupled regime ̇
�

/H ⌧ 1. In contrast, as n approaches 0, DM spends more time in the
weakly-coupled regime and a broader range of k-modes can be a↵ected by the dark sector physics. This is particularly
apparent for the n = 1 model where a large range of k-modes are damped by DR di↵usion. A longer period spent in
the weak coupling regime also implies that the damping envelope significantly departs from the exponential relation
e�(k/kdamp)

2

derived in the tight-coupling limit [88].

In Fig. 2, we study the impact of the angular coe�cients ↵2 on the matter transfer function. Here, we choose
models with a non-vanishing a4 (left panel) and a2 (right panel) coe�cient, and vary the value of ↵2 from 1/2 to
5/2 while keeping everything else fixed. While we realize that it might not be possible to find a physical DM model
realizing these di↵erent values of ↵2, our goal here is to illustrate the sensitivity of the DM distribution to these
parameters. The left panel of Fig. 2 shows that ↵2 has a significant e↵ect on the damping tail of the matter transfer
function, with a smaller value of ↵2 associated with more damping. We can understand this result by noting that the
quantity ↵2̇DR�DM controls the growth of the DR quadrupole which is associated with DR di↵usion damping of DM
perturbations. At a fixed value of the opacity ̇DR�DM, a smaller ↵2 leads to a faster growth of the DR quadrupole,
which results in a stronger damping term. This can also be seen from the direct calculation of the Silk damping scale,
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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well
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models using a simple parametrization.

IV. ETHOS: MAPPING PARTICLE MODELS TO STRUCTURE FORMATION SCENARIOS

In the standard cold DM paradigm, DM is assumed to be non-relativistic and to interact primarily via the grav-
itational force. These simple hypotheses have been extremely successful at explaining the structure of the Universe
on large scales. However, we must keep in mind that this success does not necessarily preclude the existence of
nontrivial DM microphysics that could a↵ect structure formation at smaller scales, where these hypotheses remain
untested. Indeed, causality dictates that new non-gravitational interactions in the DM sector can only modify the
matter distribution on small scales, leaving large scales intact. Many models have been proposed that either allow
for DM self-interactions inside halos at late times, or for interactions between DM and other particles in the early
Universe, or both (see Section I and references therein). An immediate di�culty in exploring these models is that
structure formation on small scales is highly nonlinear, requirying expensive high-resolution simulations in order to
make clear predictions that can be compared with observations. The cost of these simulations renders nearly impossi-
ble the task of a systematic exploration of all DM models that lead to modified small-scale structures. To address this
situation, we develop here an “E↵ective THeory Of Structure formation” (ETHOS), in which the DM microphysics is
systematically mapped to e↵ective parameters that directly control astrophysical structure formation. These e↵ective
parameters fully describe the linear evolution of the growth of structures and provide a convenient parameterization
for DM self-interactions. These two ingredients can then serve as the input for simulations to follow the growth of
structures in the non-linear regime. The advantage of developing ETHOS is clear: all DM particle models that map to
a given e↵ective ETHOS model can be constrained at the same time by comparing a single simulation of the e↵ective
ETHOS model with observations at no extra computational cost.

In section II, we have performed a detailed analysis of the Boltzmann equation governing the evolution of DM
(including DM dark radiation interactions and DR self-interactions), and have determined that the structure of the
linear matter power spectrum can be entirely determined (up to second-order e↵ects) by a set of opacity and angular
coe�cients given by

n

!DR, {an,↵l

}, {b
n

,�
l

}, {d
n

,m
�

, ⇠}
o

. (105)

Moreover, we have seen that, to a good approximation, the subset
�

!DR, {an,↵l

} is largely responsible for setting the
broad structure of the linear matter power spectrum, with the other parameters providing relatively small corrections.
The set of l�dependent coe�cients ↵

l

encompass information about the angular dependence of the DM-DR scattering
cross section, whereas a

n

are the coe�cients of the power-law expansion in temperature (redshift) of the DM drag
opacity caused by the DM-DR interaction. In section III, we have introduced a simple parametrization for the DM
self-interaction cross section based on averages of the transfer cross section evaluated at a few velocities vM relevant to
key astrophysical objects (dwarf galaxies, Milky-Way-size galaxies, and galaxy clusters). Taken together, the e↵ective
parameters describing a given ETHOS model are then

⌅ETHOS =

(

!DR, {an,↵l

},
n h�

T

i
vMi

m
�

o

)

, (106)

where we have allowed an arbitrary number of velocity reference points v
Mi . From the perspective of the structure

formation theory, two models having identical e↵ective parameters in ETHOS would yield universes populated by
statistically identical DM structures. The above ETHOS parametrization thus allows the classification of DM theories
with respect to their structure formation properties, instead of their intrinsic particle properties. One might object
that the mapping between particle theories and ETHOS scenarios is never exact since distinct DM models will always
make slightly di↵erent predictions. However, the nonlinear nature of the evolution of small-scale structures is very
e↵ective at erasing the memory of small di↵erences in the linear power spectrum [74, 104], hence making the mapping
quite e↵ective at classifying DM models in broad categories.

As a first application of the ETHOS framework, we present in a companion paper [74] high-resolution simulations
of a few ETHOS models characterized by non-vanishing values of a4 and ↵

l�2 = 3/2, corresponding to the particle
physics model described in Section II F 1 (a massive DM particle interacting with a massless neutrino-like fermion
via a new massive mediator). This application has the objective of using ETHOS to address at least two of the
main challenges of the cold DM model regarding the DM distribution in the Milky Way, namely the missing satellite
problem and the too big to fail problem. We stress however, that the scope of ETHOS goes beyond the cold DM
challenges. It is a framework that generalizes structure formation to include viable DM phenomenology, o↵ering a
new and powerful tool to explore new DM physics.

• Starting from first principles, we have identified where the 
key DM physics enters the evolution of cosmological 
perturbations.

• We have proposed a simple parametrization for the generic 
case of DM-DR interaction. 
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ETHOS -- Next Step: Make it an 
actual “effective” theory

• ETHOS

• Early times: perturbative 
density fluctuations.

• Near collapse time: k-
modes strongly-coupled, 
need simulations.

• After virialization: new 
degrees of freedom 
(halos??) What is the 
effective description 
here?

• QCD

• High T: perturbative in 
the quarks.

• Near Tc: strongly-
coupled, need Lattice 
computation.

• T << Tc: new degrees 
of freedom (mesons, 
hadrons), chiral 
Lagrangian.



Ultimate goal: Combine constraints
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Gravitational Lensing

Merging Clusters

Stellar StreamsDwarf galaxies

Lyman-alpha forest



Take-Home Message
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• In the most pessimistic scenario, gravitational signatures 
of DM might be all we have access to.

• Important clues about DM physics lie on small-scales.

• From an astrophysical perspective, there is a need to 
classify and parametrize dark matter models with respect 
to their structure formation properties.

• We have taken a first step in this direction with the 
ETHOS framework.

• Much work remains to be done to make ETHOS an actual 
effective theory and use it as a common language to 
describe observations. 


