From Dark Particle Physics to the Matter Distribution of the Universe

Aspen Particle Physics conference, March 21 2017

Francis-Yan Cyr-Racine

Postdoctoral Fellow

Department of Physics, Harvard University

With contributions from:

Jesús Zavala, Mark Vogelsberger Kris Sigurdson, Torsten Bringmann, Christoph Pfrommer

Dark Matter: what is it, and what it isn't

- Dark matter is primarily an astrophysical and cosmological problem.
- It is not primarily a particle physics problem, although it can easily be accommodated within many extensions of the Standard Model.
- Consensus: some kind of new particle(s).

Dark Matter: Possible Ideas

In dark matter science, hope for the best...

• Let's hope we can find dark matter in the lab...

FERMI GAMMA-RAY SPACE TE

...but prepare for the worst!

• Gravitational signatures might be all we can observe!

Which kind of DM physics can we probe?

1) Physics affecting the DM transfer function (initial conditions)

2) Physics affecting the dynamics of structure formation (self-interaction)

Vogelsberger, Zavala, Cyr-Racine +, arXiv:1512.05349

But small scales are messy... Is there anything we can do with large scales?

Let's consider the CMB.

Probing the dark matter transfer function: Cosmic microwave background

Dark matter is needed to source the gravitational potential

Linear regime: Cosmic microwave background

Linear regime: Cosmic microwave background

Linear regime: Cosmic microwave background

• The next frontier is to constrain subdominant DM component

Let's now focus on small, non-linear scales

Simulations: Subhalo mass function

2) Changing the dynamic of structure formation: self-interaction

Selfinteraction
cross
section over
DM mass

Vogelsberger, Zavala, Cyr-Racine +, arXiv:1512.05349

2) Changing the dynamic of structure formation: self-interaction

Example:

The density profile of collapsed DM objects develops a constant density core.

Vogelsberger, Zavala, Cyr-Racine +, arXiv:1512.05349

Self-interaction: Velocity profile of local dwarfs

Self-interaction: Interplay with baryons

• Unlike CDM, SIDM can thermalize and equilibrate with the baryons.

From Dark Matter Physics to Predictions

• So far, we have focused on making structure-formation predictions in relevant dark matter models.

From Observations to Dark Matter Physics

• How do we infer the physics of dark matter from observations?

NEEDED:

A classification of dark matter theories according to their structure formation properties.

ETHOS: the Effective THeory Of Structure formation

• ETHOS allows the classification of dark matter theories according to their structure formation properties rather than their intrinsic particle properties.

$$\Xi_{\text{ETHOS}} = \left\{ \omega_{\text{DR}}, \{a_n, \alpha_l\}, \left\{ \frac{\langle \sigma_T \rangle_{v_{M_i}}}{m_{\chi}} \right\} \right\}$$

• All dark matter particle models that map to a given effective ETHOS model can be constrained at the same time.

ETHOS-2

ETHOS: First Step

- In the first paper, we are primary concerned with dark matter having significant interactions with relativistic species.
- These models are well-motivated in the context of self-interacting dark matter.
- These models are characterized by a non-CDM matter power spectrum and self-interaction at late times inside halos.

Classification of dark matter theories according to their structure formation properties

• Where does the particle physics of DM enter the problem?

Dark Matter Equations

$$\dot{\delta}_{\chi} + \theta_{\chi} - 3\dot{\phi} = 0,$$

$$\dot{\theta}_{\chi} - c_{\chi}^{2}k^{2}\delta_{\chi} + \mathcal{H}\theta_{\chi} - k^{2}\psi = \dot{\kappa}_{\underline{\chi}} \left[\theta_{\chi} - \theta_{\mathrm{DR}}\right]$$

DM drag opacity

$$\begin{split} & \text{Dark Radiation} \\ & \text{Equations} \\ & \dot{\theta}_{\text{DR}} + k^2(\sigma_{\text{DR}} - \frac{1}{4}\delta_{\text{DR}}) - k^2\psi = \dot{\kappa}_{\text{DR-DM}} \left(\theta_{\text{DR}} - \theta_{\chi}\right), \\ & \dot{\Pi}_{\text{DR},l} + \frac{k}{2l+1} \left((l+1)\Pi_{\text{DR},l+1} - l\Pi_{\text{DR},l-1}\right) = \left(\alpha_l \dot{\kappa}_{\text{DR-DM}} + \beta_l \dot{\kappa}_{\text{DR-DR}}\right) \Pi_{\text{DR},l}, \end{split}$$

Angular coefficients

Classification of dark matter theories according to their structure formation properties

Structure of the opacity terms:

$$\dot{\kappa}_{\mathrm{DR-DM}} = -(\Omega_{\chi}h^2)x_{\chi}(z)\sum_{n}a_{n}\left(\frac{1+z}{z_{\mathrm{D}}}\right)^{n}$$
 Envelope Function Opacity Coefficients
$$\dot{\kappa}_{\chi} = -(\Omega_{\mathrm{DR}}h^2)x_{\chi}(z)\sum_{n}\left(\frac{2+n}{3}\right)a_{n}\frac{(1+z)^{n+1}}{z_{\mathrm{D}}^{n}}$$
 Momentum Conservation

What does a_n mean?

• The index *n* is directly related to the momentum dependence of the scattering:

$$a_n \longrightarrow \sum |\mathcal{M}|^2 \propto \left(\frac{p_{\rm DR}}{m_\chi}\right)^{n-2}$$

For example:

$$a_0 \longrightarrow \sum \left| \mathcal{M} \right|^2 \propto \frac{1}{p_{\mathrm{DR}}^2}$$

$$a_2 \longrightarrow \sum |\mathcal{M}|^2 \propto \text{const.}$$

$$a_4 \longrightarrow \sum \left| \mathcal{M} \right|^2 \propto p_{\mathrm{DR}}^2$$

Application Shape of linear matter power spectrum for different *n*

$$-\dot{\kappa}_{\chi}(z_{
m drag}) = \mathcal{H}(z_{
m drag})$$

ETHOS: Brief Summary

- Starting from first principles, we have identified where the key DM physics enters the evolution of cosmological perturbations.
- We have proposed a simple parametrization for the generic case of DM-DR interaction.

$$\Xi_{\text{ETHOS}} = \left\{ \omega_{\text{DR}}, \{a_n, \alpha_l\}, \left\{ \frac{\langle \sigma_T \rangle_{v_{M_i}}}{m_{\chi}} \right\} \right\}$$

ETHOS -- Next Step: Make it an actual "effective" theory

ETHOS

- Early times: perturbative density fluctuations.
- Near collapse time: kmodes strongly-coupled, need simulations.
- After virialization: new degrees of freedom (halos??) What is the effective description here?

• QCD

- High T: perturbative in the quarks.
- Near T_c: stronglycoupled, need Lattice computation.
- T << T_c: new degrees of freedom (mesons, hadrons), chiral Lagrangian.

Ultimate goal: Combine constraints

Merging Clusters

Dwarf galaxies

Stellar Streams

Lyman-alpha forest

Take-Home Message

- In the most pessimistic scenario, gravitational signatures of DM might be all we have access to.
- Important clues about DM physics lie on small-scales.
- From an astrophysical perspective, there is a need to classify and parametrize dark matter models with respect to their structure formation properties.
- We have taken a first step in this direction with the ETHOS framework.
- Much work remains to be done to make ETHOS an actual effective theory and use it as a common language to describe observations.