Exotic Mirror Fermions from Chiral Gauge Theories
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This project starts from a technical issue:
how to simulate chiral gauge theories on
the lattice...
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This project starts from a technical issue:
how to simulate chiral gauge theories on
the lattice...

...but soon leads to some very exotic physics...

...mirror fermions in the SM which
only interact with normal matter non-
locally through gauge field topology

D. B. Kaplan ~ LHC, Dark Matter § Beyond~ 3/24/157 g uiitiiin



Goal:
Devise a nonperturbative (lattice) regulator for chiral gauge theories.
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Simple answer: to study strongly coupled chiral gauge theories
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Devise a nonperturbative (lattice) regulator for chiral gauge theories.
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Simple answer: to study strongly coupled chiral gauge theories

But also... SM is a chiral gauge theory
no non-perturbative regulator exists

no perturbative regulator is known to work past 2 loops.
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Goal:
Devise a nonperturbative (lattice) regulator for chiral gauge theories.

Why is this interesting?
Simple answer: to study strongly coupled chiral gauge theories

But also... SM is a chiral gauge theory
no non-perturbative regulator exists

no perturbative regulator is known to work past 2 loops.

Why care? Who cares about 3 loops in a weakly coupled gauge theory?
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Goal:
Devise a nonperturbative (lattice) regulator for chiral gauge theories.

Why is this interesting?
Simple answer: to study strongly coupled chiral gauge theories

But also... SM is a chiral gauge theory
no non-perturbative regulator exists

no perturbative regulator is known to work past 2 loops.

Why care? Who cares about 3 loops in a weakly coupled gauge theory?

Without understanding renormalization we do not understand
how short distance physics can decouple from the theory

..maybe there is exotic physics needed to make the SM work
that IS partly hidden from us and unsuspected? @@ "
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What is special about chiral gauge theories?

Fermion masses break the gauge symmetry
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What is special about chiral gauge theories?

Fermion masses break the gauge symmetry

What happens if you naively put a chiral gauge theory on the lattice?

You get “doublers”: multiple copies of fermions with
conjugate gauge charges

the continuum theory you simulate is vector-like (like QCD, QED)
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What is special about chiral gauge theories?

Fermion masses break the gauge symmetry

What happens if you naively put a chiral gauge theory on the lattice?

You get “doublers”: multiple copies of fermions with
conjugate gauge charges

the continuum theory you simulate is vector-like (like QCD, QED)

What happens if you give the doublers large masses to decouple them?

You break the gauge symmetry.
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Chiral symmetry — forbids mass :>
Renormalization — requires mass 4

Fundamental teasion!
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Chiral symmetry — forbids mass :>
Renormalization — requires mass 4

Fundamental teasion!

The anomaly is key to understanding chiral symmetry on the lattice
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wniral symmetry — forbids mass < gy damental tension!

Renormalization — requires mass

The anomaly is key to understanding chiral symmetry on the lattice

Ex: massless Dirac fermions in an electric field E, 1+1 dim

(inﬁnite source & sink fob

fermions
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Chiral symmetry — forbids mass

Renormalization — requires mass :> Fundamental teasion!

The anomaly is key to understanding chiral symmetry on the lattice

Ex: massless Dirac fermions in an electric field E, 1+1 dim
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In the continuum, the Dirac sea is filled...but is a Hilbert Hotel
which always has room for more



Not so on the lattice: gousvd
Can reproduce continuum physics for long wavelength modes... sil
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Not so on the lattice: Isunrd
Can reproduce continuum physics for long wavelength modes... poss 7.

...but no anomalies in
a system with a finite
number of degrees of
freedom
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Not so on the lattice: Tq
Can reproduce continuum physics for long wavelength modes... pass 7‘

...but no anomalies in
a system with a finite
number of degrees of
freedom

0,j8 =0

anomalous symmetry in the continuum

must be

explicitly broken symmetry on the lattice
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The Nielsen-Ninomiya Theorem:

T/a dep _ ~
The Euclidian fermion action: S = / \If_pD(p)\If(p)

-/ a (27T)4

cannot have a kinetic operator D satisfying all four of the following
broperties simultaneously:

,ced ,\OC’A \16\3(\%&\(\
\ N
~ . . . . . (6%\'\ W\
D(p) is a periodic, analytic function of p,; & ac @\O & rﬁ\a\lors »
D(p) x yupy for alp,| < 1; eV do\)\o\.\“% a\s‘lﬁ\“\
_ «
D(p) invertible everywhere except p,, = 0; &SO ﬁsac\“\
y {Fv D(p)} = 0. (r= YS) = (esve
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The Nielsen-Ninomiya Theorem:

T/a d2kp _ ~
The Euclidian fermion action: S = /7T M (27T) 1 \If_pD(p)\If(p)

cannot have a kinetic operator D satisfying all four of the following
broperties simultaneously:
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\2 N2
~ . o . , e’ A
1. D(p) is a periodic, analytic function of p,; < ac @ \° P ,‘\,&,c;f"> "
2. D(p) < v,p, for alp,| < 1; % 60\)\0\'\\‘\% ,A\S‘I“\«\e

g «
3. D(p) invertible everywhere except p,, = 0; &@o cs“cx\\
e e

Advances in the 1990s showed us how to break global chiral symmetry in just the
right way for QCD...but will be problematic when chiral symmetry is gauged!
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How Wilson fermions reproduce the global chiral symmetries of QCD:

Lattice covariant

‘ derivatives }

= (D +m+aD?) 7

( vnolatesv

chiral symmetry
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How Wilson fermions reproduce the global chiral symmetries of QCD:

Lattice covariant

‘ derivatives )

= (D +m+aD?) 7

( vuolatesv

chiral symmetry

 Break the symmetries explicitly at the lattice cutoff (m~1/a)!

e Fine tune the hell out of the theory to find chiral symmetry in the
continuum...magically, the anomaly is reproduced as a byproduct

e Lost: the benefits of chiral symmetry - multiplicative mass
renormalization, non-mixing of operators...

e ...and a particularly disturbing way to deal with gauged chiral
symmetries
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Domain Wall Fermions solved the problem of global chiral symmetry on
the lattice (1992): = anomalies are the only breaking of chiral symmetry
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Domain Wall Fermions solved the problem of global chiral symmetry on
the lattice (1992): = anomalies are the only breaking of chiral symmetry

ordinary dimensions

~——— Y

extra dimension

Introduce a compact extra
dimension

5d fermion has heavy positive mass
on one side, negative on the other

Chiral massless states appear at the
mass defects; other modes are
heavy

Gauge fields do not depend on
extra dimension

Low energy theory looks like a
single massless favor with chiral
symmetry
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Nielsen-Ninomiya theorem? Anomalies?
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Nielsen-Ninomiya theorem? Anomalies?

The heavy bulk fermion masses break chiral symmetry.
They decouple completely except for induced Chern-Simons term:
(For now: 5d background gauge fields)

m(s)

m(s)

Ea,bd0614a 8()1408(1146
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Nielsen-Ninomiya theorem? Anomalies?

The heavy bulk fermion masses break chiral symmetry.
They decouple completely except for induced Chern-Simons term:
(For now: 5d background gauge fields)

m(s)

m(s)

Differentiate w.r.t. Asto get Js

Ea,bd0614a 8()1408(1146

m(s) -

FF = 05J5 x [6(s) — (s — L) FF
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Nielsen-Ninomiya theorem? Anomalies?

The heavy bulk fermion masses break chiral symmetry.
They decouple completely except for induced Chern-Simons term:
(For now: 5d background gauge fields)

m(s)

m(s)

Differentiate w.r.t. Asto get Js

Ea,bd0614a 8()1408(1146

m(s) -

FF = 05J5 x [6(s) — (s — L) FF

Bulk current explains anomalous disappearance of charge on
one defect and reappearance on the other
= anomalous chiral symmetry violation
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This is what is called a topological insulator
these days by condensed matter theorists
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m = +A

The only relevant effect of the heavy bulk
fermions on low energy physics is the
Chern-Simons current proportional to F F*

—> gives the correct anomaly without any
other feature of chiral symmetry breaking
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m = +A

The only relevant effect of the heavy bulk
fermions on low energy physics is the
Chern-Simons current proportional to F F*

—> gives the correct anomaly without any
other feature of chiral symmetry breaking

Chiral symmetry is only exact (up to anomaly) in the infinite extra dimension limit

Can construct the exact 4d effective theory in this limit (the “overlap operator”).
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m = +A

The only relevant effect of the heavy bulk
fermions on low energy physics is the
Chern-Simons current proportional to F F*

—> gives the correct anomaly without any
other feature of chiral symmetry breaking

Chiral symmetry is only exact (up to anomaly) in the infinite extra dimension limit

Can construct the exact 4d effective theory in this limit (the “overlap operator”).

Can this construction be used for chiral gauge theories?
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Can’t we just “cut away” the RH fermions
and keep the LH ones??

“
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Can’t we just “cut away” the RH fermions
and keep the LH ones??

No: RH fermions appear at the new
boundary
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Can’t we just “cut away” the RH fermions
and keep the LH ones??

»
g
.0

L
1

No: RH fermions appear at the new
boundary

Can we just localize the gauge fields near
the LH fermions?

LLH
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localized

gauge
fields

D. B. Kaplan ~ LHC, Dark Matter § Beyond~ 3/24/157 g uiitiiin



Can’t we just “cut away” the RH fermions
and keep the LH ones??

No: RH fermions appear at the new

: RH boundary

: Can we just localize the gauge fields near
LLH . |
the LH fermions?

No: The 5d kinetic term allows fermions to
“hop” in the extra dimension; localizing the

(\j gauge field would explicitly break gauge
symmetry.
localized
gauge
fields
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Lattice approach to chiral gauge theories always involves mirror
fermions (RH partners for every LH fermion)

Two choices:
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Lattice approach to chiral gauge theories always involves mirror
fermions (RH partners for every LH fermion)

Two choices:

Break the gauge symmetry explicitly
to give the mirror fermions mass
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Lattice approach to chiral gauge theories always involves mirror
fermions (RH partners for every LH fermion)

Two choices:

: ! _" &
i =, :.‘ . | [
Break the gauge symmetry explicitly Make mirror fermions decouple
to give the mirror fermions mass in a gauge invariant way
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Lattice approach to chiral gauge theories always involves mirror
fermions (RH partners for every LH fermion)

Two choices:

: f _" &
- WEEE
Break the gauge symmetry explicitly % Make mirror fermions decouple,/
to give the mirror fermions mass \Jh a gauge invariant way g

a2
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New proposal: “localize” gauge fields using gradient flow

Dorota Grabowska, D.B.K.
e Phys.Rev.Lett. 116 211602 (2016) [arXiv:1511.03649]
e Phys.Rev. D94 (2016) no.11, 114504 [arXiv:1610.02151]

Gradient flow smooths out fields by evolving them classically in
an extra dimension via a heat equation

N1 S
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New proposal: “localize” gauge fields using gradient flow

Dorota Grabowska, D.B.K.
e Phys.Rev.Lett. 116 211602 (2016) [arXiv:1511.03649]
e Phys.Rev. D94 (2016) no.11, 114504 [arXiv:1610.02151]

Gradient flow smooths out fields by evolving them classically in
an extra dimension via a heat equation

D A, (x,t) lives in 5d bulk
O
= Iy O0A (a? t) =
-g % ’ — —DVFHV covariant flow eq.
t t
t A,u (a’;, O) — A,u (CE) boundary condition

A,u (QZ‘) lives on 4d boundary of 5d world

L
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Gradient flow (continuum version):

g A,u (ZIL‘, t) lives in 5d bulk

O

= I O A (x,1) _

-g . 'uat ’ — —DVFMV covariant flow eq.
T A’u (CE, O) — A'u (.CZ?) boundary condition

A,u ($) lives on 4d boundary of 5d world
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Gradient flow (continuum version):

g A,u (ZIL‘, t) lives in 5d bulk

O

= I O A (x,1) _

-g . 'uat ’ — —DVFMV covariant flow eq.
t A’u (CC, O) — A,u (,CE) boundary condition

A,u ($) lives on 4d boundary of 5d world

2d/3d U(1] A= 0w+ €A = Jw=0, O\=

>~

example:
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Gradient flow (continuum version):

g A,UJ (ZIL’, t) lives in 5d bulk
O
= I O A (x,1) _
-g 'ua ’ = -0, F,Uﬂ/ covariant flow eq.
t t
T A’u (CC, O) — A'u (ZE) boundary condition

A,u ($) lives on 4d boundary of 5d world

>~

2d/3d U(1) A,u — @Lw + eluyauA = at@ =0 y atj\ —

example:

Evolution in t damps out high momentum X B _p2t
modes in physical degree of freedom only A(pv t) — )\(p)e
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Gradient flow (continuum version):

g A,UJ (ZIL’, t) lives in 5d bulk

O

= I O A (x,1) _

-g . 'Uét ’ — —DVFMV covariant flow eq.
T AM (CE, O) — A'u (.CE) boundary condition

A,u ($) lives on 4d boundary of 5d world

>~

2d/3d U(1) A,u — @,Jw + eluyaVA = at@ =0 y 8?55\ —

example:

Evolution in t damps out high momentum X B _p2t
modes in physical degree of freedom only )\(p, t) — )\(p)e

This will allow A(p) to be localized near t=0 while maintaining gauge invariance
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Combining gradient flow gauge fields with domain wall fermions:

gradient flow

gauge fields™ e Ws
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

+ RH
14
__/
gradient flow
gauge fields™~——e—Ws
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

+ RH
14
__/
gradient flow
gauge fields™~——e—Ws
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

e sauge field A,(x,s) defined as solution ,-i
to gradient flow equation with BC:
A.(x,0)= Au(x) = RH
'
/
gradient flow
gauge fields™~——e—Ws
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

e sauge field A,(x,s) defined as solution ,-i
to gradient flow equation with BC:
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

e sauge field A,(x,s) defined as solution ,-i
to gradient flow equation with BC:
A.(x,0)= Au(x) = RH
v
e gauge invariance maintained
_/
gradient flow
gauge fields™~——e—Ws
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

e sauge field A,(x,s) defined as solution ,-i
to gradient flow equation with BC:
A.(x,0)= Au(x) = RH
v
e gauge invariance maintained
_/
gradient flow
gauge fields™~——e—Ws
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

S
] ‘I‘HI'I n

\g
‘0

e sauge field A,(x,s) defined as solution
to gradient flow equation with BC:
AH(X/O)z AIJ(X)

[}
A

BUN
- ¢

e gauge invariance maintained

e RH mirror fermions behave as if with
very soft form factor... “Fluff”...and
decouple from gauge bosons as s—>eo

.-------‘“.”"-

\

gradient flow

gauge fields™~——e—Ws
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

S
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e sauge field A,(x,s) defined as solution
to gradient flow equation with BC:
AH(X/O)z AIJ(X)
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e gauge invariance maintained

e RH mirror fermions behave as if with
very soft form factor... “Fluff”...and
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

S
] ‘I‘HI'I n

\g
‘0

e sauge field A,(x,s) defined as solution
to gradient flow equation with BC:
AH(X/O)z AIJ(X)

[}
A

BUN
- ¢

e gauge invariance maintained

e RH mirror fermions behave as if with
very soft form factor... “Fluff”...and
decouple from gauge bosons as s—>eo

.-------‘“.”"-

\

e method fails when theory is gradient flow

anomalous (a good thing) gauge fields ™ ——eeeWV s
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
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Combining gradient flow gauge fields with domain wall fermions:

e quantum gauge field Ay(x) lives at
defect at s=0 where LH fermions live

S
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e sauge field A,(x,s) defined as solution
to gradient flow equation with BC:
AH(X/O)z AIJ(X)
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e gauge invariance maintained

e RH mirror fermions behave as if with
very soft form factor... “Fluff”...and
decouple from gauge bosons as s—>eo
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e method fails when theory is gradient flow

anomalous (a good thing) gauge fields ™ ——eeeWV s
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Decoupling mirror fermions as soft fluff in a gauge
Invariant way:

D Can show that this could only lead to a local 4d quantum field
theory if the fermion representation has no gauge anomalies

52 ...exp(-p?s) form factors are a problem in Minkowski
&/ spacetimel...but can take s = o limit first before lattice spacing
a — o using the overlap operator method. OK theory?

\/ gradient flow doesn’t damp out instantons, which can induce
interactions with fluff

O0A, (x,t
ot
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« Apparently one can regulate anomaly-free chiral gauge theories on
the lattice w/o breaking gauge invariance

L)
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« Apparently one can regulate anomaly-free chiral gauge theories on
the lattice w/o breaking gauge invariance

 RH mirror fermions do not entirely decouple: they do not couple to
physical or virtual gauge bosons, but still interact with matter
through topological gauge field configurations
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« Apparently one can regulate anomaly-free chiral gauge theories on
the lattice w/o breaking gauge invariance

 RH mirror fermions do not entirely decouple: they do not couple to
physical or virtual gauge bosons, but still interact with matter
through topological gauge field configurations

* [nteraction is very nonlocal. E.g. if Matter sees 100 instantons + 99
anti-instantons, Fluff sees 1 instanton.
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« Apparently one can regulate anomaly-free chiral gauge theories on
the lattice w/o breaking gauge invariance

 RH mirror fermions do not entirely decouple: they do not couple to
physical or virtual gauge bosons, but still interact with matter
through topological gauge field configurations

* [nteraction is very nonlocal. E.g. if Matter sees 100 instantons + 99
anti-instantons, Fluff sees 1 instanton.

Currently this is the only game in town, unless one wants a regulator the
explicitly breaks gauge invariance (which has not been shown to work).
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« Apparently one can regulate anomaly-free chiral gauge theories on
the lattice w/o breaking gauge invariance

 RH mirror fermions do not entirely decouple: they do not couple to
physical or virtual gauge bosons, but still interact with matter
through topological gauge field configurations

* [nteraction is very nonlocal. E.g. if Matter sees 100 instantons + 99
anti-instantons, Fluff sees 1 instanton.

Currently this is the only game in town, unless one wants a regulator the
explicitly breaks gauge invariance (which has not been shown to work).

Should we take Fluff seriously? What is its phenomenology? Can it explain
the strong CP problem or have other effects? Does it have similarly soft
gravitational interactions?
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Conclusions:
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Conclusions:

There is something seriously missing from our understanding of
chiral gauge theories, even the standard model: how to renormalize

A possible lattice regularization that does not break gauge
invariance implies the existence of mirror matter, Fluff, with bizarre
nonlocal interactions but potentially quite hidden

Implications/viability not well understood!

What could go wrong throwmg away Iocallty?

. L
D. B. Kaplan ~ LHC, Dark Matter § Beyond~ 2/24/157 g iiiiin



