

CMS Top quark results

(Introduction)

- → Inclusive & Differential Production
- → Spin correlations and W helicity
- **→** Anomalous couplings
- → tt + W, Z, γ cross sections
- → Mass
- → Conclusions & Outlook

Andreas Jung for the CMS collaboration

Aspen Winter Conference – From the LHC to DM and beyond

Top quark introduction

- Top is the heaviest fundamental particle discovered so far
 - $\rightarrow m_{t} = 173.34 \pm 0.76 \text{ GeV}$

[arxiv:1403.4427]

- Lifetime: $\tau \sim 5 x 10^{-25} \, \text{s}, \, \tau < 1/\Lambda_{_{OCD}} << m_{_t}/\Lambda^2_{_{OCD}}$
 - → Observe bare quark properties
 - Large Yukawa coupling to Higgs boson
 - $\rightarrow \lambda_{t} \sim 1$ only m_{t} is natural mass

Special role in electroweak symmetry breaking?

→ Large corrections to the Higgs mass from top quark "loops" (Hierarchy problem)

High precision tests of QCD/SM Tops are background to many searches

Top quarks as window to new physics

→ Focus mostly on 13 TeV results and/or most precise results

Top quark introduction

Strong interaction: Top pairs

LHC (7/8 TeV):

 $q\overline{q}$: ~15/13% (~10%, 13 TeV)

gg: ~85/87% (~90%, 13 TeV)

Decay channels:

gg fusion

Top Pair Branching Fractions

Theory (NNLO+NNLL):

Collider	$\sigma_{\rm tot} \; [{ m pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) $-0.200(2.8%)$	+0.169(2.4%) $-0.122(1.7%)$
LHC 7 TeV	172.0	+4.4(2.6%) $-5.8(3.4%)$	$+4.7(2.7\%) \\ -4.8(2.8\%)$
LHC 8 TeV	245.8	+6.2(2.5%) $-8.4(3.4%)$	+6.2(2.5%) $-6.4(2.6%)$

LHC 13 TeV $\sigma = 832^{+40}_{-46} \text{ pb}$

- CMS 1st cross section measurement at 5 TeV in eµ dilepton
- Event counting
- Relative precision: $\delta \sigma / \sigma = 28\%$

$$\sigma$$
 = 82 ± 20 (stat.) ± 5 (syst.) ± 10 (lumi.) pb

Source	Number of events
	$\mathrm{e}^{\pm}\mu^{\mp}$
Drell–Yan	1.6 ± 0.4
Non W/Z	1.0 ± 0.9
tW	0.89 ± 0.02
WV	0.41 ± 0.02
Total background	3.9 ± 0.8
Signal ($t\bar{t} \rightarrow e\mu$)	16.7 ± 0.2
Data	24

Top quark production

- CMS cross section measurement in the dilepton channel @13TeV, $\delta\sigma/\sigma = 5.6\%$
- Dominated by Hadronisation, JES

$$\sigma = 793 \pm 8 \text{ (stat.)} \pm 38 \text{ (syst.)} \pm 21 \text{ (lumi.)} \text{ pb}$$

- Most precise measurement at 13 TeV
- In-situ constrains on systematics
- Fit jet and b-jet categories starting 1 jet to reduce systematics
- Relative precision: $\delta \sigma / \sigma = 3.9\%$
- I+jets decay channel

A. Jung

$$\sigma$$
 = 835 ± 3 (stat.) ± 23 (syst.)
± 23 (lumi.) pb

Top quark production

- New measurements at 2, 5 and 13 TeV agreement with the SM
- Profile log-LH fit by D0:
 - Reduced uncertainties
 - Optimized to extract pole mass

Combination of dilepton & I+jets:

$$\sigma = 7.26 \pm 0.13$$
 (stat.) $\pm 0.57/0.50$ (syst.) pb

 $\delta \sigma / \sigma = 7.6\%$

Phys. Rev. D 94 092004 (2016)

- Run I & Run II top pT measurements at ATLAS/CMS not described by NLO and most MCs
- Data is more soft: consistently seen in all decay channels, also at 13 TeV

- → The pT spectra are described by NNLO calculations
- → First indications of a slope wrt NNLO in 13 TeV data, not yet significant

- CMS: 13 TeV data shows less jets than MC
 - Regime of the parton showers (PS)
 - Already systematically limited, better understanding of signal model needed
- Use 8 TeV dilepton channel results to tune MC parameters, than check description in 8 TeV l+jets and in 13 TeV for both channels
 - Improve high Njets phase space
 - h_{damp:}: control ME/PS matching
 - $\alpha_{_{ISR}}$: $\alpha_{_{S}}$ for initial state radiation

Dilepton CMS-PAS-TOP-16-011 l+jets CMS-PAS-TOP-16-008

Differential cross section as a function of event variables:

Phys. Rev. D 94 (2016) 052006

A. Jung

- First 2D cross section measurement of this type at the LHC
- Dilepton eµ channel very good S/B
- Provide single & double differential cross sections

CMS-TOP-14-013

First 2D cross section measurement of this type at the LHC

CMS-TOP-14-013

- Dilepton eµ channel very good S/B
- Provide single & double differential cross sections
 - 2D cross sections more sensitive to large x PDFs

Constrain PDFs at large x

Boosted regime

- All-hadronic channel: Use reconstructed top mass to derive bg norm+shape
- Consistent picture in boosted and resolved phase space
- Parton level results receive larger systematic uncertainties
- CMS 13 TeV <u>all-hadronic combined resolved and boosted analysis</u>

Boosted regime

- Hadronic decay products reconstructed with single jet R = 1.2
- Peak position of m_{jet} sensitive to m_t

 $M_{top} = 171.8 \pm 9.5$ (tot) GeV

Detailed understanding of jet substructure observable crucial for boosted topologies

Single top quark production

- Test of EW interactions
- Single top cross section as high as tt at 8 TeV – large samples
- Extract V_{tb}
- Search for flavor changing neutral currents, highly suppressed in SM
- Sensitivity to proton PDFs: especially b and u/d-ratio

Energy	Process	Cross section [pb]	
Tevatron (1.96 TeV)	t	2.10 ± 0.13	
	S	1.05 ± 0.06	
	Wt	0.25 ± 0.03	
LHC (7 TeV)	t	65.9 ^{+2.1} _{-0.7} (scale) ^{+1.5} _{-1.7} (PDF)	
	S	4.56 ± 0.07 (scale) $^{+0.18}_{-0.17}$ (PDF)	
	Wt	$15.6 \pm 0.4 \text{ (scale)} \pm 1.1 \text{ (PDF)}$	
LHC (8 TeV)	t	87.2 ^{+2.8} _{-1.0} (scale) ^{+2.0} _{-2.2} (PDF)	
	S	5.55 ± 0.08 (scale) ± 0.21 (PDF)	
	Wt	22.2 ± 0.6 (scale) ± 1.4 (PDF)	
LHC (13 TeV)	t	$216.99^{+6.62}_{-1.61}$ (scale) ± 6.16 (PDF)	
	S	10.3 ± 0.4	
	Wt	71.1 ± 3.8	

Single top quark production

- CMS: <u>First differential</u> measurement of t-channel top production <u>@13 TeV</u>
- Muon-channel only employing a BDT discriminator and maximum likelihood fit
- Correct detector and measure parton level cross section for pT and y

Vtb and FCNC

CMS-TOP-PAS-16-004

Vtb enters in production and decay: $\sigma \sim |Vtb|^2$ Flavor Changing Neutral Currents are highly suppressed in SM t c,u

Still above SM predictions but reached sensitivity to certain BSM models

Ttbar + X: W, Z, γ

- Associated production of W and Z in the SM (different mechanisms)
- Observations at 8 TeV at ATLAS and CMS
- 13 TeV ATLAS & CMS:
 - Extract σ employing binned profile LH fit
 - CMS includes 3 & 4 lepton final states
 - Systematic unc's dominated by: Lepton ID, signal model

CMS Top quark results

Ttbar + X: W, Z, γ

<u>SM (NLO)</u>: $\sigma(ttZ) = 839 \pm 93$ fb and $\sigma(ttW) = 601 \pm 55$ fb

 $\sigma(t\bar{t}Z) = 0.70 \pm 0.16/0.15(stat.) \pm 0.14/0.12(syst.)$ pb Expected (observed) significance of 5.8 (4.6) $\sigma(t\bar{t}W) = 0.98 \pm 0.23/0.22(stat.) \pm 0.22/0.18(syst.)$ pb Expected (observed) significance of 2.6 (3.9)

Ttbar + Ttbar

SM (NLO): $\sigma(tt+tt) = 9 \text{ fb}$

- Dilepton & I+jets channels, at least 2 b-jets
- Use boosted decision tree to enhance signal

- Observed 10.2 x σ (SM, tt+tt)
- Observed 10.8 +6.7-3.8 x σ (SM, tt+tt)

Content

→ Selection of results, focus on most recent and/or precise results

Top quark spin correlations

- Top quark spins expected to be correlated in SM (short life time)
- Spin analyzing power of leptons is 1, measure lepton distributions
- Powerful handle to search for BSM in difficult phase space regions
- Spin correlation strength:

$$A = \frac{(N_{\uparrow\uparrow} + N_{\downarrow\downarrow}) - (N_{\uparrow\downarrow} + N_{\downarrow\uparrow})}{(N_{\uparrow\uparrow} + N_{\downarrow\downarrow}) + (N_{\uparrow\downarrow} + N_{\downarrow\uparrow})}$$
$$f = \frac{N_{\text{SM}}^{\text{t\bar{t}}}}{N_{\text{SM}}^{\text{t\bar{t}}} + N_{\text{uncor}}^{\text{t\bar{t}}}}$$
$$A_{basis}^{meas} = A_{basis}^{SM} \cdot f$$

- → A depends on basis, energy, production mechanism
- → f represents degree of SC relative to the SM

Top quark spin correlations

- Top quark spins expected to be correlated in SM
- Reconstruction based on leptons \rightarrow Dilepton decay channel, ≥ 2 jets
- Inclusive and differential measurements @ parton level by reg. Unfolding
- <u>Dominated by:</u> Unfolding & top p_T reweighting

Results agree with NLO QCD: Spins correlated!

•Search for top chromomagnetic anomalous couplings using differential cross section distribution

PRD 93, 052007 (2016)

$$\mathcal{L}_{\mathrm{eff}} = \frac{\tilde{\mu}_{\nu}}{2} \bar{t} \sigma^{\mu\nu} T^{a} t G^{a}_{\mu\nu} - \frac{\tilde{d}_{\nu}}{2} \bar{t} i \sigma^{\mu\nu} \gamma_{5} T^{a} t G^{a}_{\mu\nu}$$

Re(
$$\mu_t$$
) = -0.006 ± 0.024 (tot.)
- 0.053 < Re(μ_t) < 0.042 at 95% CL
- 0.068 < Re(\int) < 0.067 at 95% CL

W helicity

• W helicity in SM: f_L=0.30 →

f_R=0

CMS also measured W helicity in single top events

 Similar precision but <u>orthogonal</u> systematic uncertainties in single top channels

Signal model & template statistics

Most accurate experimental determination

$$F_0 = 0.681 \pm 0.012$$
 (stat.) ± 0.023 (syst.)

$$F_{I} = 0.323 \pm 0.008 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$$

$$F_R = 0.004 \pm 0.005 \text{ (stat.)} \pm 0.014 \text{ (syst.)}$$

Top quark width

- Requires 2 leptons (e,µ) and at least 2 jets
 (> 0 identified as b-jet)
- Direct bound on top quark decay width
- Likelihood approach using simulated MCs for different decay widths
- MC's accurate to NLO in production and LO in decay

Missing orders & BSM physics can affect

the extraction

0.6 < Γ < 2.5 GeV @95% CL (expected 0.6 < Γ < 2.4 GeV)

Content

→ Selection of results, focus on most recent and/or precise results

Top quark mass

- First measurement at 13 TeV, µ+jets decay channel: CMS-TOP-PAS-016-022
- Follows same strategy as the 8 TeV measurement:
 - 2D fit of m(top) vs. Jet energy scale factor

$$M_{top} = 172.62 \pm 0.38 \text{ (stat+JSF)} \pm 0.70 \text{ (syst.)} \text{ GeV}$$

$$\delta m_{t}/m_{t} = 0.46\%$$

m_tfit [GeV]

 Top quark mass in single top quark production: CMS-TOP-PAG-15-001

- Blinded analysis
- Employ m_{l/h} distribution

$$m_{top} = 172.60 \pm 0.77(stat.)$$

 $\pm 0.97/0.93(syst.) GeV$

 $\delta m_{i}/m_{i} = 0.71\%$

Top quark mass

- Direct measurements combined using BLUE consistent among methods/channels
- Latest CMS combination, $\delta m_t/m_t = 0.28\%$ $m_{top} = 172.44 \pm 0.48 \text{ GeV}$

- World combination, $\delta m/m_{top} = 0.44\%$ $m_{top} = 174.34 \pm 0.76$ GeV
- Final D0 combination, $\delta m/m_1 = 0.43\%$ $m_{top} = 174.95 \pm 0.75 \text{ GeV [arXiv:1703.06994]}$

CMS [arXiv:1603.02303]

- Extraction from production cross section not (yet) competitive with direct measurements – but getting closer
- CMS precision at 1%; ATLAS: 1.45%
 - D0 precision (best at Tevatron): ~ 1.9%
- With ~5% theory uncertainty and ~2% exp
 - → can reach 0.5% on pole mass

EW vacuum stability

- Very subjective but illustrative, combined latest results from CMS and D0
- Assumes SM to be true

Caveat:

- Direct methods e.g. template, matrix element, likelihood, ideogram measure the "MC" mass, lots of effort to "calibrate" the "MC" mass
- Estimates: O(0.5 GeV) difference to pole mass

PRL 117, 232001 (2016)

- Large data sets allow to constrain PDFs, understand signal modeling
- High precision top quark property measurements, also accessible now in **single top quark production** (*t*-channel)
- Single top now differential opening up a new realm
- Results on Asymmetry are not yet completely conclusive...

Evidence for associated production of W, Z, γ

→ No significant deviations seen from SM expectations at LHC Run I or early Run II results

Only small limited selection of results shown, more information:

Thank you! CMS Top Web pages

Run II just started!

- → We will get about 80 million tt events
- \rightarrow Allows for multi-dimensional & simultaneous measurements of σ , α_s , PDFs and properties as well ultra precision results

via measurements @ parton level & fiducial particle level

→ FCNCs and other statistically limited processes will

significantly improve!

TODAY

1 Way 8 Way 12 Way 55 Way 26 Way 2 lnu 15 lnu 18 lnu 56 ln

200/fb

Top quark: FCNC

Accepted by JHEP CMS-TOP-14-007

- Search in single top production (t-channel)
 - Combine 7 and 8 TeV data
- MVA technique to: suppress QCD, separate signal & bg, search for Wtb couplings & FCNC interactions
- Systematic uncertainties dominated by: Background normalization

(Limits on left & right vector and tensor couplings via link top right)

Top quark mass

More on EW stability: K. Mukaida

- Self-consistency test of the SM & stability of the EW vacuum both rely/use pole mass – what we measure depends on the method
 - Indirect extraction from e.g. cross section, end point, J/psi method
 - → top quark pole mass
 - Direct methods e.g. template, matrix element, likelihood, ideogram
 - → "MC" mass, close to pole mass

Top quark mass

- Direct measurements combined using BLUE
 - Takes correlations into account
- Latest ATLAS combination
 - Precision of 0.4% (!) $m_{top} = 172.84 \pm 0.70 \text{ GeV}$
- Latest CMS combination
 - Precision of 0.3% (!) $m_{top} = 172.44 \pm 0.48 \text{ GeV}$
- World average
 - Precision of 0.4% (!) $m_{top} = 174.34 \pm 0.76$ GeV
- Final D0 combination
 - Precision of 0.4% (!)
 m_{top} = 174.95 ± 0.76 GeV

Top quark asymmetries

Summary of the current Situation:

- Experiment: Dominated by stats & signal model dominates systematic unc's
- Theory: Need QCD predictions at NNLO

- All measurements are (so far) in agreement with SM
- At 13 TeV and new methods: expect to observe SM asymmetries
 - Larger gg fraction reduces them → improved methods, e.g.

[arxiv:1309.2889]

Single top quark – summary

Decay channels:

A. Jung

Differential cross sections

- Run I & Run II top pT measurements at ATLAS/CMS not described by NLO and most MCs
- Data is more soft: consistently seen in all decay channels

Differential cross sections

Channel	Quantities	\sqrt{S}	Int.	Analysis
		(TeV)	Lum.	[RIVET]
			(fb^{-1})	[Reference]
lepton+jets	$p_T(t_h), y(t_h) , p_T(t_\ell), y(t_\ell) $	13	2.3	A
	$p_T(t\bar{t}), y(t\bar{t}) , M(t\bar{t}), N_{add-j}$			[CMS_2016_I1434354]
	,			[8]
dilepton	$N_j > 30,60,100 \mathrm{GeV}$	8	19.7	В
	p_{T}^{j1}, p_{T}^{j2}			[CMS_2015_I1397174]
	$m(jj), \Delta R(jj)$			[18]
	p_T^{bj1}, p_T^{bj2}			
	$m(b\overline{b}), \Delta R(b\overline{b})$			

	$(p_T^{j1}, p_T^{j2}, H_T)$ vs			
	GF(inclusive)			
	$GF(\eta < 0.8)$			
	$GF(0.8 < \eta < 1.5)$			
	$GF(1.5 < \eta < 2.4)$			
lepton+jets	MET, H_T , S_T , p_T^W	8	19.7	С
				[CMS_2016_I1473674]
				[19]
lepton+jets	$p_{\mathrm{T}}^{t},y_{t},p_{\mathrm{T}}^{t_{J}},y_{t_{J}}$	8	19.7	D
	·			[CMS_2015_I1388555]
				[20]
lepton+jets	$N_j > 30 \text{ GeV}$	8	19.7	E
				[21]

- First measurement at 13 TeV, µ+jets decay channel
- Follows same strategy as the 8 TeV measurement:
 - 2D fit of m(top) vs. Jet energy scale factor

CMS-TOP-PAG-15-001

→ "pole"

→ "kin"

means extracted from production cross sections means direct measurements, e.g. matrix element method

Top quark asymmetries

- Measurements at Tevatron & LHC are complementary
 - Variety of models (large parameter space) still allowed \rightarrow W', G, ω , ϕ , Ω
 - qq initial state, in gg is zero
 - NLO is 1st appearance

- NLO+EW prediction (Bernreuther, et al.)
 - $\rightarrow A_C^{t\bar{t}} = +0.011 \pm 0.0004$

Single top quark production

- CMS combines 7 and 8 TeV data
 - Categorized by #b-tags, #jets
 - Binned maximum-likelihood fit to a **BDT** discriminant

$$\sigma$$
 = 13.4 ± 7.3 (stat. + syst.) pb [$\delta\sigma/\sigma$ =55%] Observed 2.5 SD (1.0 SD expected)

- CMS 1st tW-channel observation at 8 TeV
 - Categorized by #b-tags, #jets
 - Binned maximum-likelihood fit to a BDT discriminant

 $\sigma = 23.4 \pm 5.4$ (stat. + syst.) pb [$\delta \sigma / \sigma = 23\%$] 6.1 SD (5.4 SD expected)

Differential cross sections

Differential cross sections

Top quark width

Ttbar + *X*: *W*, *Z*, *B*

- Tight photon ID requirements and cuts to suppress the bg
- Observation at 7 TeV by ATLAS and first measurement at 8 TeV by CMS

$$R = \sigma_{\bar{t}t+\gamma}/\sigma_{\bar{t}t}$$

= $(1.07 \pm 0.07(\text{stat.}) \pm 0.27(\text{syst.})) \cdot 10^{-2}$

$$\sigma_{t\bar{t}+\gamma} = R \cdot \sigma_{\bar{t}t}^{\text{CMS}}$$

= 2.4 \pm 0.2(stat.) \pm 0.6(syst.) pb

 Dominated by object IDs (jets, photon, btag) and signal model related

Ttbar + X: W, Z, γ

- 2D fit of ttW and ttZ cross sections, dominated by statistical unc's
- SM (NLO): $Q(ttZ) = 206 \pm 29$ fb and $Q(ttW) = 203 \pm 25$ fb

Proces	s Cr	oss secti	on	Sign.	
ttZ	150 ⁺⁵⁵	(stat.) ±	21 (syst.) fl	b 3.10	
ttW	300 +120 -100	(stat.)	+70 (syst.) ft -80	b 3.10	

Process	Cross section	Significance
tŧW	170^{+90}_{-80} (stat.) $^{+70}_{-70}$ (syst.) fb	1.6σ
tŧZ	200_{-70}^{+80} (stat.) $_{-30}^{+40}$ (syst.) fb	3.1σ
$t\bar{t}W + t\bar{t}Z$	380^{+100}_{-90} (stat.) $^{+80}_{-70}$ (syst.) fb	3.7 σ

Top quark polarization

- In tt̄ production: New physics polarizes top quarks
- Polarization introduced by CP conserving or violating process:

$$\Box P_{CPC} = -0.035 \pm 0.014 \text{ (stat.)} \pm 0.037 \text{ (syst.)}$$
 $\Box P_{CPV} = 0.020 \pm 0.016 \text{ (stat.)} \pm \frac{0.013}{0.017} \text{ (syst.)}$

 \in : Spin analyzing power, $P_{CPX:}$ top quark polarization

PRL 111, 232002 (2013)

- Good agreement with SM

 (negligible polarization), also seen

 by: CMS: PRL 112 (2014) 182001
- by: -> CMS: PRL 112 (2014) 182001 PRD 87, 011103(R) (2013)
 - → D0:
- In single top production, measure polarized top quarks as expected

$$P_t = 0.82 \pm 0.12 \text{ (stat.)} \pm 0.32 \text{ (syst.)}$$

CMS-PAS-TOP-13-001

W helicity

in single top production

• W helicity in SM: f₁=0.30 ♠ f₂=0.70 ←

- Complements results in pair production
- Similar precision but <u>orthogonal</u> systematic uncertainties in single top channels
 - Signal model & template statistics

Top quark asymmetries

Interference appears at NLO QCD:

- \rightarrow Only occurs in $q\overline{q}$ initial state; gg is fwd-bwd symmetric
- This is a forward-backward asymmetry at Tevatron
- No valence anti-quarks at LHC $\rightarrow \bar{t}$ more central
- SM predictions at NLO (QCD+EWK)
 - → Tevatron: $A_{FB} \sim 8-9$ % vs. LHC: $A_{C} \sim 1$ % (waiting for full NNLO pQCD predictions)

$$A_{\rm C} = rac{N(\Delta|y_{
m t}| > 0) - N(\Delta|y_{
m t}| < 0)}{N(\Delta|y_{
m t}| > 0) + N(\Delta|y_{
m t}| < 0)}$$

Top quark asymmetries

Tevatron Top Asymmetry

Tevatron Preliminary

- Expect final results and Tevatron combination very soon
- Agreement with latest theory predictions

A. Jung

Top quark: FCNC

CMS PAS-TOP-13-017

- Flavor Changing Neutral Currents are highly suppressed in SM, but enhancement in many models of new physics
- Search for FCNC involving Z bosons:

B(t
$$\rightarrow$$
 ug) < 5.7 · 10⁻⁵ B(t \rightarrow ug) < 3.55 · 10⁻⁴ B(t \rightarrow cg) < 2.7 · 10⁻⁴ B(t \rightarrow cg) < 3.44 · 10⁻³

- Search for Higgs boson production in the dilepton (same sign) and trilepton channel
- Systematic uncertainties dominated by: Background modeling / cross sections
- Limit on top-charm flavor-violating Higgs Yukawa coupling & upper limits for branching fractions:

Top quark: FCNC

- Flavor Changing Neutral Currents are highly suppressed in SM
- Analyses assume all anomalous couplings zero but one
- Still above SM predictions but reached sensitivity to certain BSM models

Measurement methods

• Matrix Element method (leading order) calculates event probability densities from dOdX

$$P(x, m_t) = \frac{1}{\sigma(m_t)} \int \sum \underline{d\sigma(y, m_t)} \, dq_1 dq_2 \, \underline{f(q_1) f(q_2)} \, \underline{W(y, x, k_{\rm JES})}$$
Transfer function

 Ideogram method event likelihood based on Breit-Wigner (signal) convoluted with detector resolutions

$$\mathcal{L}\left(\text{sample}|m_{\mathsf{t}}, \text{JSF}\right) = \prod_{\text{events}} \left(\sum_{i=1}^{n} P_{\text{gof}}\left(i\right) \left(\sum_{j} f_{j} P_{j}\left(m_{\mathsf{t},i}^{\text{fit}}|m_{\mathsf{t}}, \text{JSF}\right) \times P_{j}\left(m_{\mathsf{W},i}^{\text{reco}}|m_{\mathsf{t}}, \text{JSF}\right)\right)\right)^{w_{\text{event}}}$$

- Template method compares histograms in data to simulations (including detector resolutions)
- Depend on MC → We measure "MC mass"
- Alternative methods ("End-point", J/Φ , "O")

SM vacuum stability

Inflation Instability $(H_I = 10^{14} \text{ GeV})$

128

Stability

132

130

- With the Higgs discovery the SM can be extrapolated to Planck scale energies
- "Test" the stability of the electroweak vacuum, under assumption of no new physics:
- \rightarrow meta-stable, life time > O(10⁸⁰) t_{universe}
- but new physics can change that dramatically $V(\phi) = \frac{\lambda}{4}\phi^4 + \frac{\lambda_6}{6}\frac{\phi^6}{M_P^2} + \frac{\lambda_6}{6}\frac{\phi^6}{M_P^2}$

dim 6 & 8 BSM modifications

178

176

174

170

168

166

180

178

176

174

172

170

Fop pole mass M_t in GeV

Instability

Meta-stability

SM Higgs