Future Circular Collider Study

Status and Progress

M. Benedikt, F. Zimmermann

gratefully acknowledging input from FCC coordination group
global design study team and all other contributors

Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305
• FCC Study Scope & Time Line
• Machine Design
• Technologies
• FCC Organisation & Collaboration
International FCC collaboration (CERN as host lab) to study:

- **pp-collider (FCC-hh)**
 - main emphasis, defining infrastructure requirements
 - ~16 T \(\Rightarrow\) 100 TeV **pp** in 100 km

- 80-100 km tunnel infrastructure in Geneva area, site specific

- **e^+e^- collider (FCC-ee)**, as potential first step

- **p-e (FCC-he)** option, integration one IP, FCC-hh & ERL

- **HE-LHC** with **FCC-hh** technology
Must advance fast now to be ready for the period 2035 – 2040

Goal of phase 1: CDR by end 2018 for next update of European Strategy
Review panel – Decision to focus on 100 km tunnel

FCC week 2016 in Rome:
- Single and double tunnel
- Inclined access tunnels
- hh and ee requirements

- Revised layout for realisation studies
- Naming convention

Cost and schedule study ongoing with 2 consultants

- Cost & schedule estimates
- Inclined access shafts assessment
- Tunnel and shaft cross-section designs

Nov. 2015

Apr. 2016

Aug. 2016

Sept. 2016

- Quaternary
- Lake
- Wildflysch
- Molasse subepilithic
- Molasse
- Limestone
- Shaft
- Alignment
• 90 – 100 km fits geological situation well
• LHC suitable as potential injector
• The 97.75 km version, tangent to LHC, is now being studied in more detail
FCC-hh injector studies

Injector options:
- SPS \rightarrow LHC \rightarrow FCC
- SPS/SPS_{\text{upgrade}} \rightarrow FCC

Current baseline:
- Injection energy 3.3 TeV LHC

Alternative option:
- Injection around 1.5 TeV
- SPS_{\text{upgrade}} could be based on fast-cycling SC magnets, 6-7T, \sim 1T/s ramp
Common layouts for hh & ee

FCC-ee 1, FCC-ee 2,
FCC-ee booster (FCC-hh footprint)

• 2 main IPs in A, G for both machines
• asymmetric IR optic/geometry for ee to limit synchrotron radiation to detector

Lepton beams must cross over through the common RF to enter the IP from inside. Only a half of each ring is filled with bunches.

Max. separation of 3(4) rings is about 12 m: wider tunnel or two tunnels are necessary around the IPs, for ±1.2 km.
Hadron collider parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>FCC-hh</th>
<th>HE-LHC* tentative</th>
<th>(HL) LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>collision energy cms [TeV]</td>
<td>100</td>
<td>>25</td>
<td>14</td>
</tr>
<tr>
<td>dipole field [T]</td>
<td>16</td>
<td>16</td>
<td>8.3</td>
</tr>
<tr>
<td>circumference [km]</td>
<td>100</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td># IP</td>
<td>2 main & 2</td>
<td>2 & 2</td>
<td>2 & 2</td>
</tr>
<tr>
<td>beam current [A]</td>
<td>0.5</td>
<td>1.12</td>
<td>(1.12) 0.58</td>
</tr>
<tr>
<td>bunch intensity $[10^{11}]$</td>
<td>1</td>
<td>1 (0.2)</td>
<td>(2.2) 1.15</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>25</td>
<td>25 (5)</td>
<td>25</td>
</tr>
<tr>
<td>beta* [m]</td>
<td>1.1</td>
<td>0.3</td>
<td>(0.15) 0.55</td>
</tr>
<tr>
<td>luminosity/IP $[10^{34} \text{ cm}^{-2}\text{s}^{-1}]$</td>
<td>5</td>
<td>20 - 30</td>
<td>(5) 1</td>
</tr>
<tr>
<td>events/bunch crossing</td>
<td>170</td>
<td><1020 (204)</td>
<td>850</td>
</tr>
<tr>
<td>stored energy/beam [GJ]</td>
<td>8.4</td>
<td>1.2</td>
<td>(0.7) 0.36</td>
</tr>
<tr>
<td>synchrotr. rad. [W/m/beam]</td>
<td>30</td>
<td>3.6</td>
<td>(0.35) 0.18</td>
</tr>
</tbody>
</table>
Contributions from teams at CERN and other institutes:
• Complete optics, collective effects, collimation studies

NEW LAYOUT NOV. 2016

Basis for design evaluation:
• Beam dynamics, losses
Feedback to element designs, e.g. magnet quality specifications
High synchrotron radiation load of proton beams @ 50 TeV:

- \(~30\ \text{W/m/beam (}@16\ \text{T})\) (LHC <0.2W/m)
- 5 MW total in arcs (@1.9 K!!!)

New Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power by a factor 50 to 100 MW total
Progress on
- Geometry design and beam screen support
- Prototype construction
- Thermal load to cold bore reduction
- Synchrotron Radiation absorber
- Pumping speed optimisation
- Pumping holes optimisation
- Misalignment effects

Simulated quench behaviour
Max displacement 0.47 mm
Cryo power for cooling of SR heat

Overall optimisation of cryo-power, vacuum and impedance

Temperature ranges: <20, 40K-60K, 100K-120K

Multi-bunch instability growth time: 25 turns 9 turns (ΔQ=0.5)
Nb$_3$Sn is one of the major cost & performance factors for FCC-hh and requires highest attention

Main development goals until 2020:
- J_c increase (16T, 4.2K) > 1500 A/mm2 i.e. 50% increase wrt HL-LHC wire
- Reference wire diameter 1 mm
- Potentials for large scale production and cost reduction
Collaborations FCC Nb$_3$Sn program

Procurement of state-of-the-art conductor for protoyping:
- Bruker – European,
- OST – US

Stimulate conductor development with regional industry:
- CERN/KEK – Japanese contribution. Japanese industry (JASTEC, Furukawa, SH Copper) and laboratories (Tohoku Univ. and NIMS).
- CERN/Bochvar High-technology Research Inst. – Russian contribution. Russian industry (TVEL) and laboratories
- CERN/KAT – Korean industrial contribution
- CERN/Bruker – European industrial contribution

Characterisation of conductor & research with universities:
- Europe: Technical Univ. Vienna, Geneva University, University of Twente
- Applied Superconductivity Centre at Florida State University

New US DOE MDP effort – US activity with industry (OST) and labs
CERN-EU program ‘EuroCirCol’ on 16 T dipole design

European Union Horizon 2020 program
- Support for FCC study
- Grant agreement 654305
- 3 MEURO co-funding

Scope:
- FCC hadron collider
 - Optics Design
 - Cryo vacuum design
 - 16 T dipole design, construction folder for demonstrator magnets
16 T dipole options and plans

- Down-selection of options mid 2017 for detailed design work
- Model production 2018 - 2022
- Prototype production 2023 - 2025

Swiss contribution via PSI

Canted Cos-theta
Program (MDP) Goals:

GOAL 1:
Explore the performance limits of Nb$_3$Sn accelerator magnets with a focus on minimizing the required operating margin and significantly reducing or eliminating training.

GOAL 2:
Develop and demonstrate an HTS accelerator magnet with a self-field of 5 T or greater compatible with operation in a hybrid LTS/HTS magnet for fields beyond 16 T.

GOAL 3:
Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction.

GOAL 4:
Pursue Nb$_3$Sn and HTS conductor R&D with clear targets to increase performance and reduce the cost of accelerator magnets.
lepton collider parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>FCC-ee (400 MHz)</th>
<th>LEP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics working point</td>
<td>Z</td>
<td>WW</td>
</tr>
<tr>
<td>energy/beam [GeV]</td>
<td>45.6</td>
<td>80</td>
</tr>
<tr>
<td>bunches/beam</td>
<td>30180</td>
<td>91500</td>
</tr>
<tr>
<td>bunch spacing [ns]</td>
<td>7.5</td>
<td>2.5</td>
</tr>
<tr>
<td>bunch population [10^{11}]</td>
<td>1.0</td>
<td>0.33</td>
</tr>
<tr>
<td>beam current [mA]</td>
<td>1450</td>
<td>1450</td>
</tr>
<tr>
<td>luminosity/IP x 10^{34}cm$^{-2}$s$^{-1}$</td>
<td>210</td>
<td>90</td>
</tr>
<tr>
<td>energy loss/turn [GeV]</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>synchrotron power [MW]</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>RF voltage [GV]</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Identical FCC-ee baseline optics for all energies

FCC-ee: 2 separate rings, LEP: single beam pipe
FCC-ee exploits lessons & recipes from past e^+e^- and pp colliders

combining successful ingredients of recent colliders \rightarrow extremely high luminosity at high energies

- LEP: high energy SR effects
- B-factories: KEKB & PEP-II: high beam currents, top-up injection
- DAFNE: crab waist
- Super B-factories
 - S-KEKB: low β_y^*
- KEKB: e^+ source
- HERA, LEP, RHIC: spin gymnastics
FCC-ee optics design

Optics design for all working points achieving baseline performance
Interaction region: asymmetric optics design

- Synchrotron radiation from upstream dipoles <100 keV up to 450 m from IP
- Dynamic aperture & momentum acceptance requirements fulfilled at all WPs
RF system requirements

Very large range of operation parameters

“Ampere-class” machines

<table>
<thead>
<tr>
<th></th>
<th>V_{total} GV</th>
<th>n_{bunches}</th>
<th>I_{beam} mA</th>
<th>ΔE/turn GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>hh</td>
<td>0.032</td>
<td></td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>0.4/0.2 30000/90000</td>
<td></td>
<td>1450</td>
<td>0.034</td>
</tr>
<tr>
<td>W</td>
<td>0.8</td>
<td>5162</td>
<td>152</td>
<td>0.33</td>
</tr>
<tr>
<td>H</td>
<td>5.5</td>
<td>770</td>
<td>30</td>
<td>1.67</td>
</tr>
<tr>
<td>t</td>
<td>10</td>
<td>78</td>
<td>6.6</td>
<td>7.55</td>
</tr>
</tbody>
</table>

“high gradient” machines

Naive scale up from an hh system

- Voltage and beam current ranges span more than factor $> 10^2$
- No well-adapted single RF system solution satisfying requirements
400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)
- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-ZH, ee-tt and ee-WW
- Baseline options 400 MHz Nb/Cu @4.5 K, 800 MHz bulk Nb system @2K
- R&D: High Q_0 cavities, coating, long-term: Nb$_3$Sn like components
collaboration & industry relations

96 Institutes

19 Companies

30 Countries
Summary

• FCC study is advancing well towards the CDR for end 2018
• Consolidated parameter sets exists for FCC-hh and FCC-ee machines with complete baseline optics design and beam dynamics compatible with parameter requirements
• First round of geology, civil engineering & infrastructure studies completed
• Superconductivity is the key enabling technology for FCC. The Nb3Sn program towards 16 T model magnets is of prime importance for FCC-hh and so is the development of high-efficiency SRF systems for FCC-ee.
• International collaboration is essential to advance on all challenging subjects to prepare a solid and convincing case for the next European Strategy update.