FCC-hh detector, physics benchmarks

Michele Selvaggi

(on behalf of the FCChh group)

CERN

Outline

- FCC-hh Detector
- Event generation
- Physics Benchmarks

Motivations for FCC-hh

Ultimate discovery machine

- directly probe new physics up to unprecendented scale
- discover/exclude:

```
- heavy resonances "strong" m(q^*) \approx 50 \text{ TeV}, [1606.00947] "weak" m(Z') \approx 30 \text{TeV}, m(gluino) \approx 10 \text{ TeV}, m(stop). \approx 5 \text{ TeV}
```

Precision machine

- probe Higgs self-coupling to few % level, and %-level precision for top yukawa and rare decays
- measure SM parameters with high precision
- exploit complementarity with e⁺e⁻ by probing high dim.operators in extreme kinematic regimes

Towards defining the FCChh detector

Machine constraints

- L* = 45 m
 - Distance between triplet and IP
 - · determines overall longitudinal size of detector
- Luminosity = $[5x10^{34} 30x10^{34}]$ cm²s⁻¹
 - low lumi, $N_{PU} = 170 (25 \text{ns})$

radiation

high lumi, $N_{PU} = 1020 (25 \text{ns}) - 204 (5 \text{ns})$

z_{vtx} resolution
CPU time
timing detector?

better for Tracking

Towards defining the FCChh detector Physics constraints

Physics objects will be more boosted

Tracking:
$$\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}$$

calorimeters:
$$\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$$

- Tracking target : achieve $\sigma / p = 10-20\% @ 10 \text{ TeV}$
- Keep calorimeter constant term as small as possible.
- Long-lived particles live longer:

ex: I TeV b-Hadron travels 10 cm before decaying I TeV tau lepton travels 2 cm before decaying

→ re-think reconstruction, include dE/dx?

Require high granularity (both in tracker and calos):

ex: W(10 TeV) will have decay products separated by DR = 0.01

Towards defining the FCChh detector Physics constraints

Physics will be more forward

- less for "high pT" physics
- more for "low pT" physics (W/Z/ Higgs, top)
- in order to maintain sensitivity in need large rapidity (with tracking) and low pT coverage
- → 1k pile-up will certainly be an issue at large rapidities

General Features

Tracker

- $-6 < \eta < 6$ coverage
- pixel: $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 15-30 \mu m$, $X/X_0(layer) \sim 0.5-1.5\%$
- outer : $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 30-100 \mu m$, $X/X_0(layer) \sim 1.5-3\%$

Calorimeters

- ECAL: LArg, $30X_0$, 1.6 λ , r = 1.7-2.7 m (barrel)
- HCAL: Fe/Sci, 9 λ , r = 2.8 4.8 m (barrel)
- endcaps and fwd to be defined (investigating HGCAL ...)

Magnet

- central R = 5, L = 10 m, B = 4T
- forward R = 3m, L = 3m, B = 4T

Muon spectrometer

- Two stations separated by I-2 m
- 50 μm pos., 70μrad angular

FCC-hh reference detector

Performance Tracking

η

η

Performance Calos

FCC CMS

	(η, φ)	$\sigma(E)/E$
$0.0 < \eta < 2.5$	0.0125×0.0125	$\frac{10\%}{\sqrt{E}} + 1\%$
$2.5< \eta <4.0$	0.025×0.025	$\frac{10\%}{\sqrt{E}} + 1\%$
$4.0< \eta <6.0$		$\frac{10\%}{\sqrt{E}} + 1\%$

	$\sigma_{(\eta,\phi)}$	$\sigma(E)/E$
$0.0 < \eta < 1.5$	0.02×0.02	$\frac{5\%}{\sqrt{E}} + 1\%$
$1.5 < \eta < 2.5$		$\frac{5\%}{\sqrt{E}} + 1\%$
$2.5< \eta <5.0$	$0.175\times(0.175\text{ - }0.35)$	$\frac{270\%}{\sqrt{E}} + 13\%$

	$\sigma_{(\eta,\phi)}$	$\sigma(E)/E$
$0.0< \eta <2.5$	0.05×0.05	$\frac{50\%}{\sqrt{E}} + 3\%$
$2.5 < \eta < 4.0$	0.1×0.1	$\frac{50\%}{\sqrt{E}} + 3\%$
$4.0 < \eta < 6.0$	0.2×0.2	$\frac{100\%}{\sqrt{E}} + 5\%$

	$\sigma_{(\eta,\phi)}$	$\sigma(E)/E$
$0.0 < \eta < 1.5$	0.1×0.1	$\frac{150\%}{\sqrt{E}} + 5\%$
$1.5 < \eta < 3.0$		$\frac{150\%}{\sqrt{E}} + 5\%$
$3.0< \eta <5.0$	$0.175 \times (0.175 - 0.35)$	$\frac{270\%}{\sqrt{E}} + 13\%$

Performance Particle-flow

Performance

Other efforts

SiFCC (US)

- scaled up SiD (ILD detector)
- B = 5T field,
- Tracker: $\sigma_{r\phi (inner)} \sim 7 \mu m$, $\sigma_{r\phi (outer)} \sim 15 \mu m$
- ECAL:
 - -r = 2.1 2.3 m
 - 30 layers Si/W sampling, 35X₀
- · HCAL:
 - r = 2.3 4.7 m
 - 64 layers Steel Scintillator, I I.25 $\lambda_{\rm I}$

- larger tracker
- more compact calorimeter
- similar overall performance

[Chekanov et al. 1612.07291]

SppC (China)

see Manqi Ruan's talk next ...

Generate/simulate events in FCCSW

- Performance of baseline FCC-hh detector has been parameterised in a dedicated Delphes card
- Delphes itself has been fully integrated within the FCCSW framework (see Joschka's talk)
- Full event generation (Pythia + Delphes) + analysis (Heppy) sequence is available.
- Step-by-step tutorial is also available:

fccsw.web.cern.ch/fccsw/tutorials/fcc-tutorials/FccFullAnalysis.html

160

 m_{4l} [GeV]

140

Event Generation

- Adapted a script¹ from CMS to produce GridPacks (now supports only MG5_aMC@NLO, soon others)
- Developed submission scripts² that allow to generate large LHE samples using lxBatch submission system
- We plan on producing centrally a set of samples of general interest:
 - -W/Z/tt/H/QCD + N jets merged (n = 4/5?)
 - do we need slicing in HT bins?
 - what else? signals?
- Matching/merging validation³ procedure is in place

I https://github.com/selvaggi/GridPackProducer

² https://github.com/clementhelsens/LHEventProducer

³ https://github.com/HEP-FCC/fcc-physics/tree/master/pythia8/validation

Conceptual Design Report

Conceptual Design Report (CDR) for FCC has to be ready by end of 2018

Aim for a ≈ 200 page document, referring to support documents with more details.

Introduction, physics landscape: Benchmarks processes, overall detector requirements, parametrized performance

Physics performance: Performance for benchmark channels

Experiment environment, detector requirements: Luminosity, MDI, Radiation environment, pileup, tracker performance, tagging, ECAL, HCAL resolution and granularity, Muons, Reference design, DELPHES parametrization

Magnet systems: engineering of reference design and alternatives

Tracker: layout, performance, technology and data rate discussion

EMCAL: LAr, W/Si, performance and technology discussion, ideas on digital ECAL

HCAL: Fe/Scintillator (Tilecal type), W?, SiPM technology, Forward, Timing

Muons: Principles of trigger versus identifier, performance, technologies

Trigger/DAQ: Principle concepts (full readout & HLT, hardware trigger)

Software: Simulation software for FCC detectors

Cavern and infrastructure: Cavern and shaft dimensions, installation scenarios, sidecavern, access, safety, shielding, activation, maintenance scenarios

Strategic R&D needs

Cost & schedule, relation to LHC detectors

Strategy:

- define benchmarks
- find volunteers (contact F. Moortgat, H. Gray)
- efforts should start very soon since 2018 is close ...

Benchmarks analyses (SM) Higgs physics:

- Higgs self-coupling (bbγγ, bbττ, bb+leptons)
- Top-Yukawa:
 - ttH, H $\rightarrow \gamma \gamma$ (threshold), H \rightarrow b b (boosted)
- Rare Higgs decays ($H \rightarrow cc, H \rightarrow \mu\mu, H \rightarrow Z \gamma$)
- "Big Five": Higgs decays (H \rightarrow 4I,WW , γ γ , $\tau\tau$, bb)
- VBF , VH

At threshold, $20x10^9$ ggH events are produced at 30 ab-1 With pT(H) > I TeV, 10^6 H events at disposal.

With the exception of double Higgs production, some of these measurements can be performed in the "boosted" regime.

Extreme kinematics (large pT(H), m(VH)) enhance sensitivity to modifications of SM coupling through **anomalous couplings** / high dim. operators.

Benchmarks analyses (SM)

Top physics couplings:

```
tt y /Z
ttH/ttZ ratio? [1507.08169]
tWb (single top s-channel)
g t t
```

At threshold, 10^{12} top pairs events are produced at 30 ab⁻¹ With pT(top) > 1 TeV, 500 10^6 top pairs events at disposal.

Same comments as for the Higgs apply here.

Key Experimental issues to be addressed in Higgs and Top studies are sensitivity to:

- final state pT, η acceptance (especially for VBF) and resolution
- tagging efficiencies and mistag rates (c, b, top, higgs)
- id efficiencies and fake rates

Benchmarks analyses (BSM)

"Strong" SUSY:

```
    gluinos, squarks: jets + MET, s.s dileptons + jets + MET:
        M<sub>g</sub> = 12 TeV, M<sub>LSP</sub> = 100 GeV
        M<sub>g</sub> = 8 TeV, M<sub>LSP</sub> = 7.8 TeV (compressed region)
    stops: 0/1 leptons + jets + MET:
        Ms<sub>top</sub> = 9 TeV, M<sub>LSP</sub> = 100 GeV
        Ms<sub>top</sub> = 5 TeV, M<sub>LSP</sub> = 4.8 TeV (compressed region)
```

Key aspects are:

- lepton pT thresholds in compressed scenarios
- MET resolution
- tracking/ calo granularity in boosted regions
- lepton id requirements in boosted leptonic top decays

Benchmarks analyses (BSM)

"Weak SUSY/ DM":

- EW-ino: boosted/ compressed points?
- DM : SU(2) multiplets/ simplified models?

Key experimental challenges:

- lepton id, lepton threshold in compressed regions?
- MET tails

"Heavy Resonances":

```
- Z' \rightarrow tt, jj, ee/\mu\mu:
M<sub>Z</sub> = 5, 30 TeV
```

Key aspects are:

- boosted tops
- high pT electron/muon resolution

In order to make sure we have some solid studies for the 2018 CDR focus on a few key benchmark studies.

Conclusion

- A reference detector for preliminary studies at p p @ 100 TeV has been defined.
- The detector performance has been parameterised in Delphes.
- This does not mean the detector is frozen for ever.
- On the contrary, we will keep improving the design.
- Present benchmark should be used as a reference point from which one can explore deviations in performance (in better or worse).
- Event generation + parameterised detector simulation chain is available for anyone to use, within the FCCSW.
- Tools are in place to explore the potential of the FCC-hh detector
- Benchmarks physics studies are being defined.
- It is time to start doing some physics!

In order to follow the FCChh activities, subscribe to the e-group:

fcc-experiments-hadron