Tagging boosted jets at
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@) Which means...

Tagging a boosted jet with
e multi-TeV momenta change the rules of the game

e we need to tag top-jets, not top quarks

® color-neutral boosted particles look like t leptons
e very-large pileup (up to 10007?)
e fast detectors (resolution below 100 ps)
e very powerful computing techniques & a super-granular detector
Its clearly going to be a different story than the LHC

Quite hard to predict what it will logk like



O)) Tagging top Jets

G. Salam, talk @FCC Higgs&BSM workshop ‘15
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https://gsalam.web.cern.ch/gsalam/talks/repo/2015-03-Higgs+BSM-FCC-Higgs+BSM-FCC-boosted-salam.pdf

@) From jet-like to t-like

Tagging a very-high-momenta boosted jet implies a change of strategy with
respect to the LHC. Example: boson tagging:

e Normally, one would look for two sub-jets in the jet
* At intermediate (for FCC) / high (for LHC) pT, this strategy looks still OK

e For large (FCC) pT values, the two sub-jets collapse into a single collimated

jet. Boosted vector bosons look like s
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&) Tagging MultiTeV

* Three strategies considered

e Standard t2/t2 + mass

1 .
TN — d_o ZpT,kmm(Alek, ARQ’k, cees ARN,k).
k

e transverse momentum flowing in five
concentric cones around the jet axis

P, flow —

/PR — (PRd - 3)?

prT,Jg

e As above, but with momentum
transverse fto jet axis

PT, flowbeam —

e Procedure applied after grooming
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@y Tagglng Mul’rlTeV Je’rs
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&) Tagging MultiTeV jets
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(&)) Dealing with out-of-time

Pileup

e Qut-of-time PU should not be an
issue (particularly if we stay @25
ns bunch spacing)

e Fast detectors under
development (for HL-LHC) with
time resolution (well) below 100

PS

o Software techniques in place to
subtract the PU (once the time
information is available

Seems like OOT PU mitigation will
be at hand by the time of FCChh

start
10

E~ogy ieY)

(=] ey ) w = L&) =Ll
=TT T I I

Time Resolution [ps]

40

CMES simulation, vs—13 T2V

~
o

o
o
UL B

50

:

lllll lllllllll

TOF Resolution =A@ C
VE

A=123 +/-10 ps
C=114+/-3ps

le: time resolution
of LYSO calorimeters

TR S A S

» Obser.ed sighal
- = Told

I ke *
In-t M2 pulse
n* BmMe e *

- — Onat

55 30 35

5 10 15 20
Electron Beam Energy [GeV]

PU-20:BX, 25 s

CM$-CR-14-410

]



https://cds.cern.ch/record/1975982
http://lss.fnal.gov/archive/2016/pub/fermilab-pub-16-176-ppd.pdf
http://lss.fnal.gov/archive/2016/pub/fermilab-pub-16-176-ppd.pdf

@) Dealing with in-time Plleup

* When tagging boosted jets, in-time
PU is dealt grooming the jets

 Which strategy to adopt depends a lot
on the environment (see CMS Run I vs

Run II)

e HL-LHC will teach us a lot

e So far, studies suggest PUPPI could
handle the problem

e Premature to address the issue now,
but jet-tagging performances depend

critically on this
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@ngging jets in the era of AI?

e A survey among experts in 2012/13 Proportion of experts with 10%% 0% 90% confidence of
to quantify by when AI will be :
developed. Not quite there by 2035, zz
but on track for it 7
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http://www.nickbostrom.com/papers/survey.pdf

@ Detector geometry &

deep learning

® Next-generation detectors are going to be more granular
® Similar to 3D arrays of “pixels”

® Extendable to 4D with fast-detector technology

® Similarity with pixelated images processed with deep learning

® Could recycle here techniques developed there
® Main complication: detector edges, transition regions, etfc
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JET IMAGES

image: Komiske, Metodiev, Schwartz arxiv:1612.01551
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K.Cranmer’s NIPS16 keynote

Oliveira, et. al arXiv:1511.05190
Whiteson, et al arXiv:1603.09349
Dawe, et al arXiv:1609.00607
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https://figshare.com/articles/NIPS_2016_Keynote_Machine_Learning_Likelihood_Free_Inference_in_Particle_Physics/4291565/1

@) Jets as an image

Jet-images approach

e Treat calorimeter
energy depositions
as image, and use

DNN for
classification

e Very promising results

e Assume regular
geometry for the
detector

e Dont simulate detector

effects explicitely
Real life might be more
complicated
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@) Jets as a sentence

e Describe a jet as a sentence (the constituents being the words)

e Use the jet algorithm as the grammar

e Apply techniques normally used for language processing (e.g., recursive neural networks)
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https://figshare.com/articles/NIPS_2016_Keynote_Machine_Learning_Likelihood_Free_Inference_in_Particle_Physics/4291565/1

D) Conclusions

Nl

* Tagging boosted jets at the LHC is going to be quite a
different business
o Different environment condition (e.g., pileup)
o different pT regime changes the rules of the game
e Progresses in detector and analysis fechniques open new
possibilities (e.g., Deep Learning)
e Quite difficult to realistically predict the future, with so
many years ahead
e LHC Run III and HL-LHC will be essential to exploit
potential of new approach
e TO KEEP IN MIND: optimizing tagging strategies has
impact on detector geometry (see DL techniques vs
irreqular detector geometries)
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