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Which means…
Tagging a boosted jet with


• multi-TeV momenta change the rules of the game


• we need to tag top-jets, not top quarks


• color-neutral boosted particles look like τ leptons


• very-large pileup (up to 1000?)


• fast detectors (resolution below 100 ps)


• very powerful computing techniques & a super-granular detector


It’s clearly going to be a different story than the LHC 


Quite hard to predict what it will look like
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Tagging top jets
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Top quarks v. Top jets  
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cf work in progress Kasieczka et al

G. Salam, talk @FCC Higgs&BSM workshop ‘15

https://gsalam.web.cern.ch/gsalam/talks/repo/2015-03-Higgs+BSM-FCC-Higgs+BSM-FCC-boosted-salam.pdf
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From jet-like to τ-like
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Tagging a very-high-momenta boosted jet implies a change of strategy with 
respect to the LHC. Example: boson tagging:


• Normally, one would look for two sub-jets in the jet


• At intermediate (for FCC) / high (for LHC) pT, this strategy looks still OK


• For large (FCC) pT values, the two sub-jets collapse into a single collimated 
jet. Boosted vector bosons look like τ’s
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Tagging a very-high-momenta boosted jet implies a change of strategy with 
respect to the LHC. Example: boson tagging:


• Normally, one would look for two sub-jets in the jet


• At intermediate (for FCC) / high (for LHC) pT, this strategy looks still OK


• For large (FCC) pT values, the two sub-jets collapse into a single collimated 
jet. Boosted vector bosons look like τ’s

From jet-like to τ-like
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Tagging MultiTeV jets
• Three strategies considered


• Standard t2/t2 + mass 


• transverse momentum flowing in five 
concentric cones around the jet axis


• As above, but with momentum 
transverse to jet axis


• Procedure applied after grooming 
(pruning or trimming) 
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5 Tagging algorithm 5

Fig. 3: Distribution of 2-subjettiness for non-filtered data for W jet with the 15 TeV mass of the resonant

4.2 pt flow with respect to the jet axis
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4.3 pt flow with respect to the beam

The pT flow variables can be computed also using the p

T

of the particles in the reference system of the detector,
rather than with respect to the jet axis. In this case

p
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where p

T,k,J

is transverse momentum of the k’s particle in J ’s jet.

5 Tagging algorithm

5.1 BDT training

A decision tree is a binary tree structured classifier similar to the one sketched in Fig. 5. Repeated left/right
(yes/no) decisions are taken on one single variable at a time until a stop criterion is fulfilled. The phase space is
split this way into many regions that are eventually classified as signal or background, depending on the majority
of training events that end up in the final leaf node. In case of regression trees, each output node represents a
specific value of the target variable. The boosting of a decision tree extends this concept from one tree to several
trees which form a forest. The trees are derived from the same training ensemble by reweighting events, and are
finally combined into a single classifier which is given by a (weighted) average of the individual decision trees.
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4 Substructure variables 4

Trimming, which keeps the subjets with a pt larger than a fixed fraction of the input jet, can be obtained
defining

Filter trimmer(Rfilt, SelectorPtFractionMin(pt fraction min));

and then applying trimmer similarly to filter above[1].

3.4 Jet mass

Given a jet algorithm (with or without applying filtering/pruning), the jet mass is computed summing the four
momenta of the jet constituents and taking the invariant mass of that. The jet mass is one of the most discriminating
variable between signal and background.

Fig. 2: Mass distribution for signal (left) and QCD background (right)

4 Substructure variables

4.1 Subjettiness

The value of so-called N-subjettiness can be computed as

⌧

N
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). (2)

Here, k runs over the constituent particles in a given jet, p

T,k

are their transverse momenta, and �R

J,k

=p
(�⌘)2 + (��)2 is the distance in the rapidity-azimuth plane between a candidate subjet J and a constituent

particle k. The normalization factor d0 is taken as

d0 =
X

k

p

T,k

R0, (3)

where R0 is the characteristic jet radius used in the original jet clustering algorithm. On the Fig. 2 one can see an
example of the distribution of ⌧2 for W jet with 15 TeV mass of the resonant.
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V-tagging

V-tagging selection:

● Pruned jet mass in [65, 105] GeV
● τ

21
 : High-Purity (τ

21
<0.5) and Low-Purity (0.5 < τ

21
<0.75)

N-subjettiness ratio

τ
21

 = τ
2
 / τ

1

τN=
1

d0

∑
k

pT , k min {ΔR1, k ,ΔR2, k , ... ,ΔRN ,k }

HP LP



Tagging MultiTeV jets
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5 Tagging algorithm 8

Fig. 7: Rejected background vs. mass of the resonant on 90% of the signal.

Fig. 8: Rejected background vs. mass of the resonant on 90% of the signal. Di↵erent colours relate to di↵erent
algorithms.

• Mass of the jet;

• pt flowbeam[0];

• pt flowbeam[1];

No grooming

Pruning

Trimming

Subjettiness

Pt-flow (jet axis)

Pt-flow

BDT trained with TMVA

Bkg rejection for signal efficiency fixed at 90%

Best option: pT-flow with trimmed jets Danyyl Brzhechko, 


CERN Summer Student ‘16

Signal: GRS→ZZ with Z→qq

Bkg: QCD jets of similar pT



Tagging MultiTeV jets
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5 Tagging algorithm 10

Fig. 11: Signal vs. mass of the resonant on 90% of the background. Di↵erent colours relate to di↵erent algorithms.

I used six masses of the resonant (G⇤): 5, 10, 15, 20, 25, 30 TeV. So, there were generated di↵erent weight files
and we can make some conclusions.

5.2 Comparison of algorithms with di↵erent jets and variables

After training we have to consider which variable is the best to recognize jets from data. On Fig. 6 you can see
plot that shows value of rejected background vs. di↵erent masses of the resonant on 90% e�ciency of the signal.
So, as you can see from this plot, the best choice is transverse momentum with respect to the beam using trimmer.

However, we need the algorithm with weights that are independent from the mass of the resonant. So I need
to sum all boosted decision tree response histograms and find the rejected background value from this summed up
histogram for 90% rate of the signal. I need to do this for all weight files (e. g. for all di↵erent algorithms that, of
course, must depend on mass). Fig. 7 shows one the rate of the rejected background vs. mass of the resonant. Also
I have created another plots to choose the best algorithm (weight file). On Fig. 8, 9 and 10 you can see di↵erent
plots.

5.3 Performances of the best algorithm vs mass

So, the best algorithm to choose is 20 TeV algorithm, because it places closest to the transverse momentum with
respect to the beam (blue triangles) for higher masses of the resonant (bigger then 10-13 TeV).
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Dealing with out-of-time Pileup
• Out-of-time PU should not be an 

issue (particularly if we stay @25 
ns bunch spacing)


• Fast detectors under 
development (for HL-LHC) with 
time resolution (well) below 100 
ps


• Software techniques in place to 
subtract the PU (once the time 
information is available


• Seems like OOT PU mitigation will 
be at hand by the time of FCChh 
start
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CMS-CR-14-410

Example: time resolution 
of LYSO calorimeters

https://cds.cern.ch/record/1975982
http://lss.fnal.gov/archive/2016/pub/fermilab-pub-16-176-ppd.pdf
http://lss.fnal.gov/archive/2016/pub/fermilab-pub-16-176-ppd.pdf


Dealing with in-time Pileup
• When tagging boosted jets, in-time 

PU is dealt grooming the jets


• Which strategy to adopt depends a lot 
on the environment (see CMS Run I vs 
Run II)


• HL-LHC will teach us a lot 


• So far, studies suggest PUPPI could 
handle the problem


• Premature to address the issue now, 
but jet-tagging performances depend 
critically on this

11



Tagging jets in the era of AI?
• A survey among experts in 2012/13 

to quantify by when AI will be 
developed. Not quite there by 2035, 
but on track for it


• Along the path to AI, interesting 
techniques are developed for


• image detection


• text analysis


• …


• These technical progresses are 
opening new paths for jet-tagging 
techniques

12

http://www.nickbostrom.com/papers/survey.pdf


Detector geometry & deep learning
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• Next-generation detectors are going to be more granular


• Similar to 3D arrays of “pixels”


• Extendable to 4D with fast-detector technology 


• Similarity with pixelated images processed with deep learning


• Could recycle here techniques developed there


• Main complication: detector edges, transition regions, etc
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J E T  I M A G E S
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

– 9 –

image: Komiske, Metodiev, Schwartz arxiv:1612.01551

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Dawe, et al arXiv:1609.00607

K.Cranmer’s NIPS16 keynote

https://figshare.com/articles/NIPS_2016_Keynote_Machine_Learning_Likelihood_Free_Inference_in_Particle_Physics/4291565/1


J E T  I M A G E S

•Apply deep learning algorithms to classify to “jet images” 

• good results (based on fast simulation & idealized uniform calorimeter) 

• preprocessed to mod out symmetries in the data 

• discretization into images looses information 
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

Average Boosted W Jet (y=1) Average QCD Jet (y=0)

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Dawe, et al arXiv:1609.00607

Jets as an image
Jet-images approach

• Treat calorimeter 

energy depositions 
as image, and use 
DNN for 
classification


• Very promising results

• Assume regular 

geometry for the 
detector


• Don’t simulate detector 
effects explicitely


Real life might be more 
complicated
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anti-kTkT

towers 

particles

images

• down-sampling by 
projecting into 
images looses 
information 

• RNN needs much 
less data to train!

TPR

1/
FP

R
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K.Cranmer’s NIPS16 keynote

Jets as a sentence
• Describe a jet as a sentence (the constituents being the words)

• Use the jet algorithm as the grammar

• Apply techniques normally used for language processing (e.g., recursive neural networks)

https://figshare.com/articles/NIPS_2016_Keynote_Machine_Learning_Likelihood_Free_Inference_in_Particle_Physics/4291565/1


Conclusions
• Tagging boosted jets at the LHC is going to be quite a 

different business

• Different environment condition (e.g., pileup)

• different pT regime changes the rules of the game

• Progresses in detector and analysis techniques open new 

possibilities (e.g., Deep Learning)

• Quite difficult to realistically predict the future, with so 

many years ahead

• LHC Run III and HL-LHC will be essential to exploit 

potential of new approach

• TO KEEP IN MIND: optimizing tagging strategies has 

impact on detector geometry (see DL techniques vs 
irregular detector geometries)
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