Improved small-x PDFs and cross sections

Emma Slade
University of Oxford

1st FCC Physics Workshop, CERN 16/1/17

Kinematics of a 100 TeV FCC

PDFs at small-x at the FCC

- At the FCC we can probe the ultra-low x region $x \lesssim 10^{-5}$ in the central region and in the forward region $y \simeq 5$, down to $x \simeq 10^{-7}$
- Therefore even for inclusive cross sections small-x PDFs are relevant at the FCC and therefore must be sensibly behaved in this region
- Lack of direct experimental observation at ultra low-x means there are large associated uncertainties

PDFs at small-x at the FCC

- At the FCC even for inclusive cross sections the PDF uncertainty is large
- If we impose no kinematic cuts we get 7% uncertainty on inclusive W+ production

	$\sigma(pp o V o l_1 l_2) \; [ext{nb}] \; (\pm \delta_{ ext{pdf}} \sigma)$		14 TeV		$100~{ m TeV}$		
			No cuts	LHC cuts	No cuts	LHC cuts	FCC cuts
NNPDF 3.0 W ⁺		W^+	11.8 (1.9)	6.4 (2.0)	73.5 (7.0)	27.8 (2.9)	52.8 (4.9)
		W^-	8.8 (1.8)	4.7 (1.4)	61.9 (5.5)	26.0 (3.0)	44.1 (3.6)
		Z	2.0 (1.7)	1.5 (1.8)	14.1 (5.1)	7.9 (3.2)	12.5 (4.1)

NNPDF3.0+LHCb charm

 Using LHCb charm data leads to reduction of PDF uncertainties at small-x

$$N_X^{ij} = \frac{\mathrm{d}^2 \sigma(\mathrm{X \ TeV})}{\mathrm{d} y_i^D \mathrm{d} (p_T^D)_j} / \frac{\mathrm{d}^2 \sigma(\mathrm{X \ TeV})}{\mathrm{d} y_{\mathrm{ref}}^D \mathrm{d} (p_T^D)_j}$$

$$R_{13/X}^{ij} = \frac{\mathrm{d}^2 \sigma(13 \,\mathrm{TeV})}{\mathrm{d}y_i^D \mathrm{d}(p_T^D)_j} / \frac{\mathrm{d}^2 \sigma(\mathrm{X} \,\mathrm{TeV})}{\mathrm{d}y_i^D \mathrm{d}(p_T^D)_j}$$

- The combinations $N_5 + N_7 + N_{13}$ and $N_7 + R_{13/5}$ were used for representative combinations of LHCb measurements
- See also (Cacciari, Mangano, Nason, 1507.06197;
 Zenaiev et al., 1503.04581)

NNPDF3.0+LHCb charm

R. Gauld, J. Rojo, 1610.09373

Implications of small-x data

• UHE charged current neutrino-nucleus cross section probes down to $x \simeq 10^{-8}$

R. Gauld, J. Rojo, 1610.09373

Kinematics

 Imposing the below cuts we computed cross sections and rapidity distributions with MCFMv8.0 to determine how the improved picture at small-x affected the PDF errors for inclusive processes at 100 TeV

Process	FCC Kinematic cuts	LHC Kinematic cuts	Scale choices
W^+	$ \eta_l < 5, p_T^l > 20 \mathrm{GeV}$	$ \eta_l < 2.5, p_T^l > 20 { m GeV}$	$\mu_F = \mu_R = m_W$
W^-	$ \eta_l < 5, p_T^l > 20 \mathrm{GeV}$	$ \eta_l < 52., p_T^l > 20 { m GeV}$	$\mu_F = \mu_R = m_W$
Z	$ \eta_l < 5, p_T^l > 20 \mathrm{GeV}$	$ \eta_l < 2.5, p_T^l > 20 { m GeV}$	$\mu_F = \mu_R = m_Z$
Direct γ	$ \eta_{\gamma} < 5, p_T^{\gamma} > 30 \mathrm{GeV}$	$ \eta_\gamma < 2.5, p_T^\gamma > 30\mathrm{GeV}$	$\mu_F = \mu_R = p_T^\gamma$
Off-peak DY	$ \eta_l < 5, p_T^l > 20 { m GeV}, 20 { m GeV} < m_{ll} < 30 { m GeV}$	$ \eta_l < 2.5, p_T^l > 20 { m GeV}, 20 { m GeV} < m_{ll} < 30 { m GeV}$	$\mu_F = \mu_R = m_{ll}$

	$\sigma(pp o V o l_1 l_2) \; [ext{nb}] \; (\pm \delta_{ ext{pdf}} \sigma)$		14 TeV		100 TeV			
			No cuts	LHC cuts	No cuts	LHC cuts	FCC cuts	
NNP	OF 3.0	W^+	11.8 (1.9)	6.4 (2.0)	73.5 (7.0)	27.8 (2.9)	52.8 (4.9)	
		W^-	8.8 (1.8)	4.7 (1.4)	61.9 (5.5)	26.0 (3.0)	44.1 (3.6)	
		Z	2.0 (1.7)	1.5 (1.8)	14.1 (5.1)	7.9 (3.2)	12.5 (4.1)	
	$\sigma(pp o V o l_1 l_2) \; [ext{nb}] \; (\pm \delta_{ ext{pdf}} \sigma)$		14 TeV		100 TeV			
NNPDF 3.0		No cuts	LHC cuts	No cuts	LHC cuts	FCC cuts		
+ N ₇ -	+ N ₇ + R _{13/5}		12.2 (1.6)	6.6 (1.7)	73.4 (3.0)	29.0 (2.7)	53.5 (2.8)	
		W^-	9.1 (1.6)	4.9 (1.7)	62.3 (2.9)	27.2 (2.8)	45.2 (2.8)	
	Z $\sigma(pp o V o l_1 l_2) \; [ext{nb}] \; (\pm \delta_{ ext{pdf}} \sigma)$		2.1 (1.6)	1.5 (1.7)	14.3 (2.8)	8.3 (2.9)	12.8 (2.8)	
			$14~{ m TeV}$		100 TeV			
NNPDF 3.0 +		No cuts	LHC cuts	No cuts	LHC cuts	FCC cuts		
$N_5 + N_7 + N_{13}$		12.0 (1.6)	6.4 (1.6)	73.8 (2.6)	28.4 (2.5)	53.4 (2.5)		
		W^-	9.0 (1.6)	4.8 (1.8)	62.6 (2.6)	26.5 (2.6)	44.9 (2.5)	
		Z	2.0 (1.6)	1.5 (1.6)	14.2 (2.6)	8.0 (2.7)	12.7 (2.5)	

Rapidity distributions

Rapidity distributions

Cross-sections at 100 TeV normalised to NNPDF3.0 with FCC cuts

Cross-sections at 100 TeV normalised to NNPDF3.0 with LHC cuts

Total cross-sections at 100 TeV normalised to NNPDF3.0 without any cuts

Summary and outlook

- Including forward charm production from LHCb improves the small-x gluon PDF
- The increase in PDF uncertainty at 100 TeV in the case of NNPDF stems the large rapidity region which probes small-x
- The kinematic coverage of the FCC means that a better understanding of ultra small-x is needed
- Next step is to extend our results to other processes such as heavy quark pair production and differential Higgs measurements (Any suggestions very welcome!)

Summary and outlook

 Including forward charm production from LHCb improves the small-x gluon PDF

SUN NOM! The increase in PDF uncertain? case of NNPDF stems the large small-x

- ne FCC means that a better سرa small-x is needed und
- Next step is to extend our results to other processes such as heavy quark pair production and differential Higgs measurements (Any suggestions very welcome!)