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Philosophy 
of 
EFT
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It is quite likely that mass scale Λ of BSM particles is beyond kinematic reach of 
current and near-future colliders

If that is true, EFT may be only way to collect partial information about BSM structure 
(much like Fermi theory taught us about W and Z before they could be produced)

Even if new particles can be reached directly, EFT useful and compact framework for 
practical calculations at E << Λ (much like we still use Fermi effective theory to 
calculate weak decays of particles with m << mZ)  

Fantastic Beasts and Where To Find Them
CMS

Imaginary  

Λ
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SM EFT Approach to BSM
Much as in SM, relativistic QFT with linearly realized SU(3)xSU(2)xU(1) local 
symmetry spontaneously broken by VEV of Higgs doublet field

Mass scale Λ of new particles separated from characteristic energy scale E of 
experiment, Λ >> E, such that experimental observables can be expanded in 
powers of E/Λ

Basic assumptions

SM EFT Lagrangian  expanded in inverse powers of Λ, equivalently in operator dimension D 

X X X
Lepton number or B-L violating, 

hence too small to probed at present  
and near-future colliders

By assumption, 
subleading

to D=6

Generated by integrating out 
heavy particle with mass scale Λ
In large class of BSM models, 

describe leading effects of new physics
on collider observables at E << Λ
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Framework general enough to describe leading effects of a large class of BSM 
scenarios

Theoretical correlations between signal and background and different signal 
channels taken into account 

Very easy to recast SM EFT results as constraints on specific BSM models 

SM EFT is consistent QFT, so that calculations and predictions can be systematically 
improved (higher-loops, higher order terms in EFT expansion if needed). In 
particular, SM EFT is renormalizable when working at given order in 1/Λ expansion

Some tools to assess validity of 1/Λ expansion 

Advantages of SM EFT 
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Table 99: Four-fermion operators in the SILH basis. They are the same as in the Warsaw basis [614], except that
the operators [O``]1221, [O``]1122, [Ouu]3333 are absent by definition. In this table, e, u, d are always right-handed
fermions, while ` and q are left-handed. A flavour index is implicit for each fermion field. For complex operators
the complex conjugate operator is implicit.

(L̄L)(L̄L) and (L̄R)(L̄R)

O``
1
v2 (¯̀�µ`)(¯̀�µ`)

Oqq
1
v2 (q̄�µq)(q̄�µq)

O0
qq

1
v2 (q̄�µ�iq)(q̄�µ�iq)

O`q
1
v2 (¯̀�µ`)(q̄�µq)

O0
`q

1
v2 (¯̀�µ�i`)(q̄�µ�iq)

Oquqd
1
v2 (q̄ju)✏jk(q̄kd)

O0
quqd

1
v2 (q̄jT au)✏jk(q̄kT ad)

O`equ
1
v2 (¯̀je)✏jk(q̄ku)

O0
`equ

1
v2 (¯̀j�µ⌫e)✏jk(q̄k�µ⌫u)

O`edq
1
v2 (¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee
1
v2 (ē�µe)(ē�µe)

Ouu
1
v2 (ū�µu)(ū�µu)

Odd
1
v2 (d̄�µd)(d̄�µd)

Oeu
1
v2 (ē�µe)(ū�µu)

Oed
1
v2 (ē�µe)(d̄�µd)

Oud
1
v2 (ū�µu)(d̄�µd)

O0
ud

1
v2 (ū�µT au)(d̄�µT ad)

(L̄L)(R̄R)

O`e
1
v2 (¯̀�µ`)(ē�µe)

O`u
1
v2 (¯̀�µ`)(ū�µu)

O`d
1
v2 (¯̀�µ`)(d̄�µd)

Oeq
1
v2 (q̄�µq)(ē�µe)

Oqu
1
v2 (q̄�µq)(ū�µu)

O0
qu

1
v2 (q̄�µT aq)(ū�µT au)

Oqd
1
v2 (q̄�µq)(d̄�µd)

O0
qd

1
v2 (q̄�µT aq)(d̄�µT ad)

v ! v(1 + �v), gs ! gs(1 + �gs), g ! g(1 + �g), g0 ! g0(1 + �g0),

� ! �(1 + ��), h ! (1 + �1)h + �2h
2/v + �3h

3/v2, (II.2.5)

where the free parameters �i are O(⇤�2) in the EFT expansion. Note that the non-linear transformation
of the Higgs boson field does not generate any new interaction terms at O(⇤�2) in the effective La-
grangian that cannot be generated by D=6 operators.II.5 In addition, one is free to add to the Lagrangian
a total derivative and/or interactions terms that vanish by equations of motion. These redefinitions of
course do not change the physical predictions or symmetries of the theory. However, they allow one to
bring the theory to a more convenient form to perform practical calculations.II.6 We will use this freedom
to demand that the mass eigenstate Lagrangian has the following features:

#1 All kinetic and mass terms are diagonal and canonically normalized. In particular, higher-derivative
kinetic terms are absent.

#2 The non-derivative photon and gluon interactions with fermions are the same as in the SM.
#3 Tree-level relations between the electroweak parameters and input observables are the same as the

SM ones in Eq. (II.2.4).
#4 Two-derivative self-interactions of the Higgs boson (e.g. h@µh@µh) are absent.
#5 In the Higgs boson interactions with gauge bosons, the derivative does not act on the Higgs (e.g.,

there is no @µhV⌫Vµ⌫ terms).
#6 For each fermion pair, the coefficient of the vertex-like Higgs interaction terms

⇣

2h
v + h2

v2

⌘

Vµf̄�µf

is equal to the vertex correction to the respective Vµf̄�µf interaction.

II.5For example, applied to the h4 self-interaction term in the SM Lagrangian, it generates h5 and h6 self-interactions at
O(⇤�2), which are also generated by the O6 operator in the SILH basis. Rather than applying the non-linear transformation,
one can equivalently use the equations of motion for the Higgs boson field.

II.6Editor footnote: Another point of view is expressed in Section II.2.3, where it is argued that this kind of transformations
make one-loop calculations harder to develop.

Many possible D=6 operators!

Giudice et al  hep-ph/0703164
Contino et al 1303.3876 

Full set has 2499 distinct operators, 
including flavor structure and CP conjugates

Alonso et al 1312.2014, Henning et al 1512.03433
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1p
2v2

, ↵ =
g2g02

4⇡(g2 + g02)
, mZ =

p

g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥

@µ(H†H)
⇤2

OT
1

2v2

⇣

H† !DµH
⌘2

O6 � �
v2 (H†H)3

Og
g2
s

m2
W

H†H Ga
µ⌫Ga

µ⌫

O�
g02

m2
W

H†H Bµ⌫Bµ⌫

OW
ig

2m2
W

⇣

H†�i !DµH
⌘

D⌫W i
µ⌫

OB
ig0

2m2
W

⇣

H† !DµH
⌘

@⌫Bµ⌫

OHW
ig

m2
W

�

DµH†�iD⌫H
�

W i
µ⌫

OHB
ig0

m2
W

�

DµH†D⌫H
�

Bµ⌫

O2W
1

m2
W

DµW i
µ⌫D⇢W i

⇢⌫

O2B
1

m2
W

@µBµ⌫@⇢B⇢⌫

O2G
1

m2
W

DµGa
µ⌫D⇢Ga

⇢⌫

O3W
g3

m2
W

✏ijkW i
µ⌫W j

⌫⇢W
k
⇢µ

O3G
g3
s

m2
W

fabcGa
µ⌫Gb

⌫⇢G
c
⇢µ

Bosonic CP-odd

eOg
g2
s

m2
W

H†H eGa
µ⌫Ga

µ⌫

eO�
g02

m2
W

H†H eBµ⌫Bµ⌫

eOHW
ig

m2
W

�

DµH†�iD⌫H
�

fW i
µ⌫

eOHB
ig

m2
W

�

DµH†D⌫H
�

eBµ⌫

eO3W
g3

m2
W

✏ijk
fW i

µ⌫W j
⌫⇢W

k
⇢µ

eO3G
g3
s

m2
W

fabc
eGa

µ⌫Gb
⌫⇢G

c
⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.

One example of non-redundant set, 
so-called SILH basis
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`]ij

i
v2

¯̀
i�k�µ`jH†�k !DµH

[OHe]ij
i

v2 ēi�µējH† !DµH

[OHq]ij
i

v2 q̄i�µqjH† !DµH

[O0
Hq]ij

i
v2 q̄i�k�µqjH†�k !DµH

[OHu]ij
i

v2 ūi�µujH† !DµH

[OHd]ij
i

v2 d̄i�µdjH† !DµH

[OHud]ij
i

v2 ūi�µdjH̃†DµH

Yukawa and Dipole

[Oe]ij

p
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

p
2mui

muj

v3 H†Hq̄i
eHuj

[Od]ij

p
2mdi

mdj

v3 H†Hq̄iHdj

[OeW ]ij
g

m2
W

p
2mei

mej

v
¯̀
i�kH�µ⌫ejW k

µ⌫

[OeB ]ij
g0

m2
W

p
2mei

mej

v
¯̀
iH�µ⌫ejBµ⌫

[OuG]ij
gs

m2
W

p
2mui

muj

v q̄iH̃�µ⌫T aujGa
µ⌫

[OuW ]ij
g

m2
W

p
2mui

muj

v q̄i�kH̃�µ⌫ujW k
µ⌫

[OuB ]ij
g0

m2
W

p
2mui

muj

v q̄iH̃�µ⌫ujBµ⌫

[OdG]ij
gs

m2
W

p
2mdi

mdj

v q̄iH�µ⌫T adjGa
µ⌫

[OdW ]ij
g

m2
W

p
2mdi

mdj

v q̄i�kH�µ⌫djW k
µ⌫

[OdB ]ij
g0

m2
W

p
2mdi

mdj

v q̄iH�µ⌫djBµ⌫

II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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Corrections to Higgs self-
couplings

Corrections to SM Z and W 
boson couplings to fermions 
(so-called vertex corrections) 

Corrections to SM Higgs 
couplings to matter and new 
tensor structures of these 
interactions

Corrections to triple and 
quartic gauge couplings and 
new tensor structures of 
these interactions  

Contact 4-fermion 
interactions

... and much more 

Observable effects of D=6 operators

One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)
[O``]IIII =

1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
[O`e]IIII = (¯̀I �̄µ`I)(ecI�µēcI) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µēcJ)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µēcI)
[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)

[Oee]IIII =
1
2(e

c
I�µēcI)(e

c
I�µēcI) [Oee]IIJJ = (ecI�µēcI)(e

c
J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:

Lv``
e↵ = �eAµ(ēI �̄µeI + ecI�µē

c
I) +

gLp
2

⇥

W+
µ ⌫̄I �̄µ(1 + �gWeI

L )eI + h.c.
⇤

+
q

g2L + g2YZµ

⇥


⌫̄I �̄µ

✓

1

2
+ �gZeI

L + �gW `I
L

◆

⌫I + ēI �̄µ

✓

�1

2
+ s2✓ + �gZeI

L

◆

eI + ecI�µ

�

s2✓ + �gZeI
R

�

ēcI

�

,

(3)

Here, the e↵ects of D = 6 operators are parameterized by the vertex corrections �g. All �g’s
in Eq. (3) are independent parameters, which in general may depend on the lepton flavor. By
construction, there is no vertex corrections to photon interactions. The parameters �g can be
related by a linear transformation to Wilson coe�cients of D=6 operators in any particular basis,
see Ref. [31] for a map to popular bases used in the literature. Therefore, �g’s are O(⇤�2) in the
EFT expansion. Note that the vertex corrections to neutrino interactions with Z in Eq. (3) are
expressed by the other vertex corrections: �gZ⌫I

L = �gZeI
L + �gWeI

L . This relation is a consequence
of the linearly realized SM gauge symmetry and the absence of operators with D > 6 in the
Lagrangian, and holds independently of the basis of D=6 operators employed in Eq. (1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in Eq. (1)
summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
4-lepton operators [31]:

�m =
�gWe

L + �gWµ
L

2
� [c``]1221

4
. (4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the absence
of operators with dimensions greater than 6. It also ensures that the Fermi constant GF measured
in muon decays is given at tree-level by GF = 1/

p
2v2. This way, the tree-level relations between

4

Important: correlations 
between different 

parameters describing 
deviations from SM
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At first sight, working with a theory with 2499 parameters seems hopeless. 

However, typically, working at fixed order in loop expansion, a much smaller set 
of operators relevant for given process 

Moreover, using constraints from previous experiments (e.g. from low-energy 
precision experiments, or from Z-pole) may further reduce number of relevant 
operators 

Importance of convenient parametrization of space of dimension-6 operators that 
makes explicit poorly constrained directions

Importance of global fits to make full use of experimental constraints

SM EFT in practice
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Origin of dimension-6 operators

Example: heavy singlet vector in UV
Tree-level operators in EFTChapter II.2. EFT Formalism 287

The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1p
2v2

, ↵ =
g2g02

4⇡(g2 + g02)
, mZ =

p

g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥

@µ(H†H)
⇤2

OT
1

2v2

⇣

H† !DµH
⌘2

O6 � �
v2 (H†H)3

Og
g2
s

m2
W

H†H Ga
µ⌫Ga

µ⌫

O�
g02

m2
W

H†H Bµ⌫Bµ⌫

OW
ig

2m2
W

⇣

H†�i !DµH
⌘

D⌫W i
µ⌫

OB
ig0

2m2
W

⇣

H† !DµH
⌘

@⌫Bµ⌫

OHW
ig

m2
W

�

DµH†�iD⌫H
�

W i
µ⌫

OHB
ig0

m2
W

�

DµH†D⌫H
�

Bµ⌫

O2W
1

m2
W

DµW i
µ⌫D⇢W i

⇢⌫

O2B
1

m2
W

@µBµ⌫@⇢B⇢⌫

O2G
1

m2
W

DµGa
µ⌫D⇢Ga

⇢⌫

O3W
g3

m2
W

✏ijkW i
µ⌫W j

⌫⇢W
k
⇢µ

O3G
g3
s

m2
W

fabcGa
µ⌫Gb

⌫⇢G
c
⇢µ

Bosonic CP-odd

eOg
g2
s

m2
W

H†H eGa
µ⌫Ga

µ⌫

eO�
g02

m2
W

H†H eBµ⌫Bµ⌫

eOHW
ig

m2
W

�

DµH†�iD⌫H
�

fW i
µ⌫

eOHB
ig

m2
W

�

DµH†D⌫H
�

eBµ⌫

eO3W
g3

m2
W

✏ijk
fW i

µ⌫W j
⌫⇢W

k
⇢µ

eO3G
g3
s

m2
W

fabc
eGa

µ⌫Gb
⌫⇢G

c
⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.
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Table 98: Two-fermion dimension-6 operators in the SILH basis. They are the same as in the Warsaw basis, except
that the operators [OH`]11, [O0

H`]11 are absent by definition. We define �µ⌫ = i[�µ, �⌫ ]/2. In this table, e, u, d

are always right-handed fermions, while ` and q are left-handed. For complex operators the complex conjugate
operator is implicit.

Vertex

[OH`]ij
i

v2
¯̀
i�µ`jH† !DµH

[O0
H`]ij

i
v2

¯̀
i�k�µ`jH†�k !DµH

[OHe]ij
i

v2 ēi�µējH† !DµH

[OHq]ij
i

v2 q̄i�µqjH† !DµH

[O0
Hq]ij

i
v2 q̄i�k�µqjH†�k !DµH

[OHu]ij
i

v2 ūi�µujH† !DµH

[OHd]ij
i

v2 d̄i�µdjH† !DµH

[OHud]ij
i

v2 ūi�µdjH̃†DµH

Yukawa and Dipole

[Oe]ij

p
2mei

mej

v3 H†H ¯̀
iHej

[Ou]ij

p
2mui

muj

v3 H†Hq̄i
eHuj

[Od]ij

p
2mdi

mdj

v3 H†Hq̄iHdj

[OeW ]ij
g

m2
W

p
2mei

mej

v
¯̀
i�kH�µ⌫ejW k

µ⌫

[OeB ]ij
g0

m2
W

p
2mei

mej

v
¯̀
iH�µ⌫ejBµ⌫

[OuG]ij
gs

m2
W

p
2mui

muj

v q̄iH̃�µ⌫T aujGa
µ⌫

[OuW ]ij
g

m2
W

p
2mui

muj

v q̄i�kH̃�µ⌫ujW k
µ⌫

[OuB ]ij
g0

m2
W

p
2mui

muj

v q̄iH̃�µ⌫ujBµ⌫

[OdG]ij
gs

m2
W

p
2mdi

mdj

v q̄iH�µ⌫T adjGa
µ⌫

[OdW ]ij
g

m2
W

p
2mdi

mdj

v q̄i�kH�µ⌫djW k
µ⌫

[OdB ]ij
g0

m2
W

p
2mdi

mdj

v q̄iH�µ⌫djBµ⌫

II.2.1.c Effective Lagrangian of mass eigenstates
In Section. II.2.1.b we introduced an EFT with the SM supplemented by D=6 operators, using a man-
ifestly SU(2) ⇥ U(1) invariant notation. At that point, the connection between the new operators and
phenomenology is not obvious. To relate to high-energy collider observables, it is more transparent to ex-
press the EFT Lagrangian in terms of the mass eigenstates after electroweak symmetry breaking (Higgs
boson, W , Z, photon, etc.). Once this step is made, only the unbroken SU(3)c ⇥ U(1)em local symme-
try is manifest in the Lagrangian. Moreover, to simplify the interaction vertices, we will make further
field transformations that respect only SU(3)c⇥U(1)em. Since field redefinitions do not affect physical
predictions, the gauge invariance of the EFT we started with ensures that observables calculated using
this mass eigenstate Lagrangian are also gauge invariant. This is possible because the full SU(2)⇥U(1)
electroweak symmetry is still present, albeit in a non-manifest way, in the form of non-trivial relations be-
tween different couplings of mass eigenstates. Finally, for the sake of calculating observables beyond the
tree-level one needs to specify the gauge fixing terms. Again, the gauge invariance of the starting point
ensures that physical observables are independent of the gauge fixing procedure. Below we only present
the Lagrangian in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero, which
is completely sufficient to calculate LHC Higgs observables at tree level; see Appendix C of Ref. [621]
for a generalization to the R⇠ gauge.

In this section we relate the Wilson coefficients of dimension-6 operators in the SILH basis to the
parameters of the tree-level effective Lagrangian describing the interactions of the mass eigenstates. The
analogous relations can be derived for any other basis; see Appendix A of [621] for the map from the
Warsaw basis. The form of the mass eigenstate Lagrangian obtained directly by inserting the Higgs VEV
and eigenstates into Eq. (II.2.2) is not convenient for practical applications. However, at this point one is
free to make the following redefinitions of fields and couplings in the Lagrangian:

Ga
µ ! (1 + �G)Ga

µ, W±
µ ! (1 + �W )W±

µ , Zµ ! (1 + �Z)Zµ, Aµ ! (1 + �A)Aµ + �AZZµ,
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Table 99: Four-fermion operators in the SILH basis. They are the same as in the Warsaw basis [614], except that
the operators [O``]1221, [O``]1122, [Ouu]3333 are absent by definition. In this table, e, u, d are always right-handed
fermions, while ` and q are left-handed. A flavour index is implicit for each fermion field. For complex operators
the complex conjugate operator is implicit.

(L̄L)(L̄L) and (L̄R)(L̄R)

O``
1
v2 (¯̀�µ`)(¯̀�µ`)

Oqq
1
v2 (q̄�µq)(q̄�µq)

O0
qq

1
v2 (q̄�µ�iq)(q̄�µ�iq)

O`q
1
v2 (¯̀�µ`)(q̄�µq)

O0
`q

1
v2 (¯̀�µ�i`)(q̄�µ�iq)

Oquqd
1
v2 (q̄ju)✏jk(q̄kd)

O0
quqd

1
v2 (q̄jT au)✏jk(q̄kT ad)

O`equ
1
v2 (¯̀je)✏jk(q̄ku)

O0
`equ

1
v2 (¯̀j�µ⌫e)✏jk(q̄k�µ⌫u)

O`edq
1
v2 (¯̀je)(d̄qj)

(R̄R)(R̄R)

Oee
1
v2 (ē�µe)(ē�µe)

Ouu
1
v2 (ū�µu)(ū�µu)

Odd
1
v2 (d̄�µd)(d̄�µd)

Oeu
1
v2 (ē�µe)(ū�µu)

Oed
1
v2 (ē�µe)(d̄�µd)

Oud
1
v2 (ū�µu)(d̄�µd)

O0
ud

1
v2 (ū�µT au)(d̄�µT ad)

(L̄L)(R̄R)

O`e
1
v2 (¯̀�µ`)(ē�µe)

O`u
1
v2 (¯̀�µ`)(ū�µu)

O`d
1
v2 (¯̀�µ`)(d̄�µd)

Oeq
1
v2 (q̄�µq)(ē�µe)

Oqu
1
v2 (q̄�µq)(ū�µu)

O0
qu

1
v2 (q̄�µT aq)(ū�µT au)

Oqd
1
v2 (q̄�µq)(d̄�µd)

O0
qd

1
v2 (q̄�µT aq)(d̄�µT ad)

v ! v(1 + �v), gs ! gs(1 + �gs), g ! g(1 + �g), g0 ! g0(1 + �g0),

� ! �(1 + ��), h ! (1 + �1)h + �2h
2/v + �3h

3/v2, (II.2.5)

where the free parameters �i are O(⇤�2) in the EFT expansion. Note that the non-linear transformation
of the Higgs boson field does not generate any new interaction terms at O(⇤�2) in the effective La-
grangian that cannot be generated by D=6 operators.II.5 In addition, one is free to add to the Lagrangian
a total derivative and/or interactions terms that vanish by equations of motion. These redefinitions of
course do not change the physical predictions or symmetries of the theory. However, they allow one to
bring the theory to a more convenient form to perform practical calculations.II.6 We will use this freedom
to demand that the mass eigenstate Lagrangian has the following features:

#1 All kinetic and mass terms are diagonal and canonically normalized. In particular, higher-derivative
kinetic terms are absent.

#2 The non-derivative photon and gluon interactions with fermions are the same as in the SM.
#3 Tree-level relations between the electroweak parameters and input observables are the same as the

SM ones in Eq. (II.2.4).
#4 Two-derivative self-interactions of the Higgs boson (e.g. h@µh@µh) are absent.
#5 In the Higgs boson interactions with gauge bosons, the derivative does not act on the Higgs (e.g.,

there is no @µhV⌫Vµ⌫ terms).
#6 For each fermion pair, the coefficient of the vertex-like Higgs interaction terms

⇣

2h
v + h2

v2

⌘

Vµf̄�µf

is equal to the vertex correction to the respective Vµf̄�µf interaction.

II.5For example, applied to the h4 self-interaction term in the SM Lagrangian, it generates h5 and h6 self-interactions at
O(⇤�2), which are also generated by the O6 operator in the SILH basis. Rather than applying the non-linear transformation,
one can equivalently use the equations of motion for the Higgs boson field.

II.6Editor footnote: Another point of view is expressed in Section II.2.3, where it is argued that this kind of transformations
make one-loop calculations harder to develop.
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Assume coefficient of D=6  EFT operator 
measures Coupling^2/Mass^2 in UV theory. 
Assuming that coefficient has been measured, 
taking strong Coupling ∼ 4π gives upper bound 
on new physics mass scale Λ

Sometimes this counting is modified when 
operator is induced at a loop level in UV 
theory or by additional powers of couplings

With some (motivated) assumptions about UV 
physics, one can work out rules to  assign 
powers of mass, coupling and loop factors to 
each EFT operator 

UV-EFT connection
Example tree-induced operator

Liu et al
1603.03064

OH = 1

2

(@µ|H|2)2

OT = 1

2

⇣
H†

$
DµH

⌘
2

O
6

= |H|6

OW = i
2

⇣
H†�a

$
DµH

⌘
D⌫W a

µ⌫

OB = i
2

⇣
H†

$
DµH

⌘
@⌫Bµ⌫

OHW = i(DµH)†�a(D⌫H)W a
µ⌫

OHB = i(DµH)†(D⌫H)Bµ⌫

OBB = |H|2Bµ⌫Bµ⌫

OGG = |H|2GA
µ⌫G

Aµ⌫

Oy = |H|2 ̄LH R

O
2B = �1

2

(@⇢Bµ⌫)2

O
2W = �1

2

(D⇢W a
µ⌫)

2

O
2G = �1

2

(D⇢GA
µ⌫)

2

O
3W = 1

3!

✏abcW a ⌫
µ W b

⌫⇢W
c ⇢µ

O
3G = 1

3!

fABCGA ⌫
µ GB

⌫⇢G
C ⇢µ

O 
L,R = (iH†

$
DµH)( ̄L,R�µ L,R)

O(3) 
L = (iH†�a

$
DµH)( ̄L�a�µ L)

O
4 =  ̄�µ  ̄�µ 

Table 1: Dimension-6 operators used in our analysis. Notice that our normalization di↵ers

from previous literature.

|H|2 |H|4 OH O
6

OV O
2V O

3V OHV OV V Oy 

ALH m2

⇤ g2⇤ g2⇤ g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV g2V y g2⇤

GSILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV

y2t
16⇡2 g2V y g2⇤

SILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
16⇡2 gV

g2⇤
16⇡2 gV

y2t
16⇡2 g2V y g2⇤

Table 2: Estimated coe�cients (ci) of di↵erent operators appearing in the e↵ective Lagrangian

for a strongly interacting Higgs, under di↵erent hypotheses: an accidentally small electroweak

scale and accidentally light Higgs (ALH), a general SILH (GSILH) scenario, and the proper

SILH of [5] where the additional assumption of MC is considered (see Appendix A). The

subscript V can denote W,B,G according to the basis defined in table 1. For the ALH scenario

the entries in the first two columns emphasize the need for tuning, w.r.t. the NDA estimate

(see Appendix B).

Appendix B. The second scenario we consider is that of a general PNGB strongly-interacting
light Higgs (GSILH), defined by the most general L satisfying the SO(5) selection rules. The
third scenario is the slightly more specific case of the SILH considered in [5], where L

0

is not
completely generic because of restricted properties of the dynamics at the scalem⇤. This third
class describes, for instance, Little Higgs models and Holographic composite Higgs models.

A few explanations of the results of table 2 are in order. First of all, we should give a
motivation for our choice of operators. Our choice singles out OW,B and O

2W,2B as the only
operators involving vectors that can be generated at tree level by the exchange of massive
vectors in a renormalizable theory. Now, as it turns out, the Little Higgs models and holo-
graphic Higgs models, in their simplest incarnations, at the scale m⇤ are described to a rather
good approximation by renormalizable Lagrangians. That property is essentially a corollary

7

Model O
2V O

3V OHW OHB OV OV V OH Oy 

Remedios (sect. 4.1) 1 g⇤

Remedios+MCHM (sect. 4.2.1) 1 g⇤ g g0 gV g2V g2⇤ y g2⇤

Remedios+ISO(4) (sect. 4.2.2) 1 g⇤ g⇤ g0 gV g2V �h y �h

Table 3: Estimated coe�cients of the dimension-6 operators for the di↵erent scenarios consid-

ered in the main text, neglecting loop e↵ects. The subscript V can denote W,B,G according

to the basis defined in table 1.

and then the limit ✏W,B ! 1 is taken.
It is now straightforward to estimate the size of the di↵erent contributions to the e↵ective

Lagrangian: only operators that are invariant under G can arise from the strong dynamics. In
particular, at dimension-6 the only such operators are OH and O

3W for which we thus expect

cH ⇠ g2⇤ , c
3W ⇠ g⇤ . (36)

On the other hand OW and OHW are not invariant under fSU(2), while OB and OHB are

forbidden by SO(4) (since H†
$
DµH and D

[µH†D⌫]H belong to (1,3) of SU(2)L ⇥ SU(2)R).
The coe�cients of those other operators will therefore be suppressed by powers of the weak
couplings, like in ordinary composite Higgs scenarios [5]. It perhaps does not make much
sense to assume here MC (see Appendix A), as, unlike for the case of the standard composite
Higgs scenario, we do not possess here any explicit, if partial, UV completion, and even less
one that satisfies MC. Finally, the coe�cients c

2W and c
2B are of O(1), as in eq. (27), contrary

to the SILH where they are suppressed by O(g2/g2⇤). A summary of these results is given in
table 3.

On the other hand, at the dimension-8 level, in addition to the F 4

µ⌫ terms discussed above,
further operators with O(g2⇤) coe�cient will arise. In particular, we shall have operators
involving two H and two field-strengths, e.g., ✏abcDµH†�aD⌫HW b

µ⇢W
⌫⇢ c (see Appendix C).

These operators, however, only contribute to the scattering of four bosons, through O(g2⇤)
corrections to V V V V , V V hh and V 3h vertices.

4.2.2 Remedios with ISO(4)

If we are willing to possibly give up UV-completions within quantum field theory (as ex-
plained, this might even have to be the case for Remedios models), we can consider scenarios
in which the Higgs is a PNGB issued from the spontaneous breakdown of a non-compact
group. The simplest such option is given by SO(4, 1)/SO(4), see for instance the discussion
in [39]10. However, its combination with Remedios does not introduce novelties with respect

10We can write a perfectly consistent e↵ective Lagrangian based on SO(4, 1)/SO(4), given the unitarity
of the residual symmetry SO(4). However a unitary CFT cannot respect a non-compact symmetry such as
SO(4, 1): within ordinary QFT, there cannot exist a UV-completion with linearly realized SO(4, 1).
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Example 1-loop-induced operator

Example tree-induced operator
+ selection rules
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A few issues 
of relevance 

for FCC
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Precision vs Energy in EFT
Two distinct interesting situations

Observables at fixed mass scale m
(e.g. Z or Higgs decays)

High-energy tails of distributions
(e.g. 2-fermion production )

Increasing UV scales probed in EFT
achieved solely by increasing

measurements precision

For Higgs decays, 
and tree EFT operator ~g*^2  
given experimental precision ε

Increasing UV scales probed in EFT
may be achieved by increasing 
energy scale of measurement

For E^2 dependent observable, 
and tree EFT operator ~g*^2  

given order 1 experimental precision

In many cases, increasing energy may be more straightforward than increasing precision

For specific real-life example, see talks of F. Riva and J. Ruderman
12Tuesday, January 17, 17



Measurement of Higgs self-couplings convoluted 
with measurement of other Higgs couplings

May need differential distributions and/or 
resolving different double Higgs production mode 
to extract corrections to self-coupling 

Higgs self-interactions in EFT
Some D=6 operators may need to wait till FCC to be meaningfully probed

One example: non-derivative Higgs self-interaction
(may contain crucial hints concerning

generation mechanism of Higgs potential)
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The tree-level relations between the input observables and the electroweak parameters are given by:

GF =
1p
2v2

, ↵ =
g2g02

4⇡(g2 + g02)
, mZ =

p

g2 + g02v

2
, m2

h = 2�v2. (II.2.4)

We demand that the dimension-6 operators O(6)
i in Eq. (II.2.2) form a complete, non-redundant

set - a so-called basis. Complete means that any dimension-6 operator is either a part of the basis or
can be obtained from a combination of operators in the basis using equations of motion, integration
by parts, field redefinitions, and Fierz transformations. Non-redundant means it is a minimal such set.
Any complete basis leads to the same physical predictions concerning possible new physics effects.
Several bases have been proposed in the literature, and they may be convenient for specific applications.
Historically, a complete and non-redundant set of D=6 operators was first identified in Ref. [614], and
is usually referred to as the Warsaw basis. This basis is described in detail in Section II.2.3., and the
relevant formulas are summarized in Appendix A of Ref. [621]. Below, we work with another basis
choice commonly used in the literature: the so-called SILH basis [464]. Later, in Section. II.2.1.d, we
propose a new basis choice that is particularly convenient for leading-order LHC Higgs analyses in the
EFT framework.

Table 97: Bosonic D=6 operators in the SILH basis.

Bosonic CP-even

OH
1

2v2

⇥

@µ(H†H)
⇤2

OT
1

2v2

⇣

H† !DµH
⌘2

O6 � �
v2 (H†H)3

Og
g2
s

m2
W

H†H Ga
µ⌫Ga

µ⌫

O�
g02

m2
W

H†H Bµ⌫Bµ⌫

OW
ig

2m2
W

⇣

H†�i !DµH
⌘

D⌫W i
µ⌫

OB
ig0

2m2
W

⇣

H† !DµH
⌘

@⌫Bµ⌫

OHW
ig

m2
W

�

DµH†�iD⌫H
�

W i
µ⌫

OHB
ig0

m2
W

�

DµH†D⌫H
�

Bµ⌫

O2W
1

m2
W

DµW i
µ⌫D⇢W i

⇢⌫

O2B
1

m2
W

@µBµ⌫@⇢B⇢⌫

O2G
1

m2
W

DµGa
µ⌫D⇢Ga

⇢⌫

O3W
g3

m2
W

✏ijkW i
µ⌫W j

⌫⇢W
k
⇢µ

O3G
g3
s

m2
W

fabcGa
µ⌫Gb

⌫⇢G
c
⇢µ

Bosonic CP-odd

eOg
g2
s

m2
W

H†H eGa
µ⌫Ga

µ⌫

eO�
g02

m2
W

H†H eBµ⌫Bµ⌫

eOHW
ig

m2
W

�

DµH†�iD⌫H
�

fW i
µ⌫

eOHB
ig

m2
W

�

DµH†D⌫H
�

eBµ⌫

eO3W
g3

m2
W

✏ijk
fW i

µ⌫W j
⌫⇢W

k
⇢µ

eO3G
g3
s

m2
W

fabc
eGa

µ⌫Gb
⌫⇢G

c
⇢µ

The full set of operators in the SILH basis is given in Tables 97, 98, and 99. We use the normal-
ization and conventions of Ref. [464].II.4

II.4In Ref. [464] it was assumed that the flavour indices of fermionic D=6 operators are proportional to the unit matrix.
Generalizing this to an arbitrary flavour structure, one needs to specify flavour indices of the operators [OH`], [O0

H`], [O``] and
[O0

uu] which are absent in the SILH basis to avoid redundancy. Here, for concreteness, we made a particular though somewhat
arbitrary choice of these indices.

|��3| ⇤ [TeV] nbest ⇤SMEFT [TeV]
0.01 4.5 9 160
0.1 3.9 6 50
1 3.1 4 16
10 2.0 2 5.0
20 1.6 1 2.8
40 1.1 1 1.4

Table 3: The perturbative unitarity bound on the cut-o↵ scale ⇤ in the cubic-Higgs-
deformed SM. We show ⇤ set by the [GG]0hn ! [GG]0hn process for 4 di↵erent values
of |��3|, and also the value of n = nbest that gives the most stringent bound. In the last
column we show the maximum ⇤ in the SM EFT framework where the corresponding
��3 is induced by the dimension-6 operator |H|6, obtained by demanding perturbative
unitarity of the [GG]0h ! [GG]0h, [GG]0 ! [GG]0h and [GG]0 ! [GG]0h2 processes.

unitarity of the theory up to very high scales. If they are perturbed away from the SM,
there are exist tree-level amplitudes with a wrong UV asymptotics. Namely,

• If ��3 6= 0 then the tree-level amplitudes VLVL ! VLVLhn with n � 1 and VLVL !
V 2n
L with n � 2 asymptote to a constant in the UV;

• If ��4 6= 0 then the tree-level amplitudes VLVL ! hn with n � 3 and VLVL !
VLVLhn with n � 2 asymptote to a constant in the UV.

3 A UV picture

Is there any UV theory who’s low energy contains the non-analytic terms like the ones
in Eq. (B.17)? They certainly need to arise from integrating out particles whose masses
vanish in the limit v ! 0. I could come with the following examples.

3.1 Dilaton model

Consider a modulus scalar field � coupled to the Higgs such that the scalar potential of
the system reads

V (H,�) = �m2
H(H

†H) + �(H†H)2 +M�(H†H) +
↵M5

2�
. (3.1)

This is clearly non-renormalizable so strictly speaking I don’t have a UV completion of
the

p
H†H term. The above may or may not be embedded in a UV complete theory -

I’ll think about it later.
Solving the equations of motion for � at p0 and putting the solution back to the

potential I get

V (H,�) = m2
H(H

†H) + �(H†H)2 +
p
↵M3

p
2H†H. (3.2)
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The relation between the cubic Higgs boson coupling correction and the Wilson coefficients in the SILH
basis is given by

��3 = �

✓

c̄6 � 3

2
c̄H � 1

2
[c̄0

H`]22

◆

. (II.2.29)

In accordance with the condition #4, the 2-derivative Higgs boson self-couplings have been traded for
other equivalent interactions and do not occur in the mass eigenstate Lagrangian. Self-interactions terms
with 4, 5, and 6 Higgs boson fields may also arise from dimension-6 operators, but we do not display
them here.

The interactions between two Higgs bosons and two other SM fields are parameterized as follows:

Lh2 = h2
⇣

1 + 2�c(2)
z

⌘ g2 + g02

4
ZµZµ + h2

⇣

1 + 2�c(2)
w

⌘ g2

2
W+

µ W�
µ

� h2

2v2

X

f ;ij

p
mfimfj

h

f̄i,R[y(2)
f ]ijfj,L + h.c.

i

.

+
h2

8v2

⇣

c(2)
gg g2

sG
a
µ⌫G

a
µ⌫ + 2c(2)

wwg2W+
µ⌫W

�
µ⌫ + c(2)

zz (g2 + g02)Zµ⌫Zµ⌫ + 2c(2)
z� gg0Zµ⌫Aµ⌫ + c(2)

�� e2Aµ⌫Aµ⌫

⌘

+
h2

8v2

⇣

c̃(2)
gg g2

sG
a
µ⌫G̃

a
µ⌫ + 2c̃(2)

wwg2W+
µ⌫W̃

�
µ⌫ + c̃(2)

zz (g2 + g02)Zµ⌫Z̃µ⌫ + 2c̃(2)
z� gg0Zµ⌫Ãµ⌫ + c̃(2)

�� e2Aµ⌫Ãµ⌫

⌘

� h2

2v2

⇣

g2c(2)
w⇤

(W+
µ @⌫W

�
⌫µ + W�

µ @⌫W
+
⌫µ) + g2c(2)

z⇤Zµ@⌫Z⌫µ + gg0c(2)
�⇤Zµ@⌫A⌫µ

⌘

. (II.2.30)

All double Higgs boson couplings arising from D=6 operators can be expressed by the single Higgs
boson couplings:

�c(2)
z = �cz, �c(2)

w = �cz + 3�m,

[y(2)
f ]ij = 3[�yf ]ije

i�ij � �cz �ij ,

c(2)
vv = cvv, c̃(2)

vv = c̃vv, v 2 {g, w, z, �},

c(2)
v⇤ = cv⇤, v 2 {w, z, �}. (II.2.31)

Other interaction terms with two Higgs bosons involve at least 5 fields: e.g the h2V 3 or h2ffV contact
interactions, and are not displayed here.

Other terms
In this section we have written down the interaction terms of mass eigenstates in the D=6 EFT La-
grangian which are most relevant for LHC Higgs phenomenology. They either enter the single and
double Higgs boson production at tree level, or they affect electroweak precision observables that are
complementary to Higgs boson couplings measurements. The remaining terms in the mass eigenstate
Lagrangian, which are not explicitly displayed in this chapter, are contained in Lother in Eq. (II.2.7).
They include 4-fermion terms, couplings of a single Higgs boson to 3 or more gauge bosons, quartic
Higgs and gauge boson self-interactions, dipole-like interactions of two gauge bosons and two fermions,
and interaction terms with 5 or more fields. For a future reference, we only comment on two 4-lepton
terms involving left-handed electrons and muons and the corresponding neutrinos:

L4` � 1

v2

⇥

[c``]1122(¯̀1�µ`1)(¯̀2�µ`2) + [c``]1221(¯̀1�µ`2)(¯̀2�µ`1)
⇤

. (II.2.32)

The coefficients of these 4-lepton terms are related to the Wilson coefficients in the SILH basis by

[c``]1122 =
2g02

g2
c̄2B � 2c̄2W ,

OH = 1

2

(@µ|H|2)2

OT = 1

2

⇣
H†

$
DµH

⌘
2

O
6

= |H|6

OW = i
2

⇣
H†�a

$
DµH

⌘
D⌫W a

µ⌫

OB = i
2

⇣
H†

$
DµH

⌘
@⌫Bµ⌫

OHW = i(DµH)†�a(D⌫H)W a
µ⌫

OHB = i(DµH)†(D⌫H)Bµ⌫

OBB = |H|2Bµ⌫Bµ⌫

OGG = |H|2GA
µ⌫G

Aµ⌫

Oy = |H|2 ̄LH R

O
2B = �1

2

(@⇢Bµ⌫)2

O
2W = �1

2

(D⇢W a
µ⌫)

2

O
2G = �1

2

(D⇢GA
µ⌫)

2

O
3W = 1

3!

✏abcW a ⌫
µ W b

⌫⇢W
c ⇢µ

O
3G = 1

3!

fABCGA ⌫
µ GB

⌫⇢G
C ⇢µ

O 
L,R = (iH†

$
DµH)( ̄L,R�µ L,R)

O(3) 
L = (iH†�a

$
DµH)( ̄L�a�µ L)

O
4 =  ̄�µ  ̄�µ 

Table 1: Dimension-6 operators used in our analysis. Notice that our normalization di↵ers

from previous literature.

|H|2 |H|4 OH O
6

OV O
2V O

3V OHV OV V Oy 

ALH m2

⇤ g2⇤ g2⇤ g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV g2V y g2⇤

GSILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
g2⇤
gV gV

y2t
16⇡2 g2V y g2⇤

SILH y2t
16⇡2m2

⇤
y2t

16⇡2 g2⇤ g2⇤
y2t

16⇡2 g4⇤ gV
g2V
g2⇤

g2V
16⇡2 gV

g2⇤
16⇡2 gV

y2t
16⇡2 g2V y g2⇤

Table 2: Estimated coe�cients (ci) of di↵erent operators appearing in the e↵ective Lagrangian

for a strongly interacting Higgs, under di↵erent hypotheses: an accidentally small electroweak

scale and accidentally light Higgs (ALH), a general SILH (GSILH) scenario, and the proper

SILH of [5] where the additional assumption of MC is considered (see Appendix A). The

subscript V can denote W,B,G according to the basis defined in table 1. For the ALH scenario

the entries in the first two columns emphasize the need for tuning, w.r.t. the NDA estimate

(see Appendix B).

Appendix B. The second scenario we consider is that of a general PNGB strongly-interacting
light Higgs (GSILH), defined by the most general L satisfying the SO(5) selection rules. The
third scenario is the slightly more specific case of the SILH considered in [5], where L

0

is not
completely generic because of restricted properties of the dynamics at the scalem⇤. This third
class describes, for instance, Little Higgs models and Holographic composite Higgs models.

A few explanations of the results of table 2 are in order. First of all, we should give a
motivation for our choice of operators. Our choice singles out OW,B and O

2W,2B as the only
operators involving vectors that can be generated at tree level by the exchange of massive
vectors in a renormalizable theory. Now, as it turns out, the Little Higgs models and holo-
graphic Higgs models, in their simplest incarnations, at the scale m⇤ are described to a rather
good approximation by renormalizable Lagrangians. That property is essentially a corollary
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EFT Lagrangian with D=6 operators predicts contains contact vertices with larger 
number of fields than in SM 

One currently unexplored example is new interactions of Higgs boson with 3 gauge 
bosons

In EFT, their coefficients are related to the anomalous triple gauge couplings 
(equivalently,  to higher-derivative Higgs couplings)

At LHC not much hope to probe these, due to phase space suppression -> 
interesting to explore FCC capabilities

Higher-point vertices

HVVV

Notes on h ! V V V decays in EFT

(last compiled October 31, 2016)

1 Interactions

From my Rosetta notebook I’m getting the following CP-even couplings of a Higgs boson
to 3 gauge bosons:

Lh�ww = eg2L
h

v

�
i (2cw2 + cww) @⌫W

+
µ W�

µ A⌫ � i (cw2 + cww) @µW
+
⌫ W�

µ A⌫

�icw2@µW
+
µ W�

⌫ A⌫ + h.c.
 

� ieg2L
h

v
Aµ⌫W

+
µ W�

⌫

�
3cw2 + cz� + s2✓c��

�
. (1.1)

Lhzww =
q
g2L + g2Y g

2
L

h

v

�
i
�
cw2(1 + 2c2✓) + cwwc

2
✓

�
@⌫W

+
µ W�

µ Z⌫

�i
�
cw2(2 + c2✓) + cwwc

2
✓

�
@µW

+
⌫ W�

µ Z⌫ + i(cw2s
2
✓)@µW

+
µ W�

⌫ Z⌫ + h.c.
 

� i
q
g2L + g2Y g

2
L

h

v
Zµ⌫W

+
µ W�

⌫

�
3cw2c

2
✓ + cww � s2✓cz� � s4✓c��

�
. (1.2)

This can be rewritten somewhat more conveniently as

Lh�ww = eg2L
h

v

�
2icw2@⌫W

+
µ W�

µ A⌫ � icw2@µW
+
⌫ W�

µ A⌫ � icw2@µW
+
µ W�

⌫ A⌫

�icwwW
+
µ⌫W

�
µ A⌫ + h.c.

 
� ieg2L

h

v
Aµ⌫W

+
µ W�

⌫

�
3cw2 + cz� + s2✓c��

�
(1.3)

Lhzww = i
q
g2L + g2Y g

2
L

h

v

�
�
�
cw2(2 + c2✓) + cwwc

2
✓

�
W+

µ⌫W
�
µ Z⌫ + cw2s

2
✓(@µW

+
µ W�

⌫ � @⌫W
+
µ W�

µ )Z⌫ + h.c.
 

� i
q
g2L + g2Y g

2
L

h

v
Zµ⌫W

+
µ W�

⌫

�
3cw2c

2
✓ + cww � s2✓cz� � s4✓c��

�
. (1.4)

1
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multi-Higgs production as test of linear EFT
Going beyond SM EFT to non-linear EFT,  
multi-Higgs production becomes strong at 

scales of order 4πv, even for small 
deviation of Higgs self-couplings from 
SM. Strong test of linear EFT at FCC

|��3| ⇤ [TeV] nbest ⇤SMEFT [TeV]
0.01 4.5 9 160
0.1 3.9 6 50
1 3.1 4 16
10 2.0 2 5.0
20 1.6 1 2.8
40 1.1 1 1.4

Table 3: The perturbative unitarity bound on the cut-o↵ scale ⇤ in the cubic-Higgs-
deformed SM. We show ⇤ set by the [GG]0hn ! [GG]0hn process for 4 di↵erent values
of |��3|, and also the value of n = nbest that gives the most stringent bound. We also
show the maximum ⇤ in the SM EFT framework where the corresponding ��3 is induced
by the dimension-6 operator |H|6, obtained by demanding perturbative unitarity of the
[GG]0h ! [GG]0h, [GG]0 ! [GG]0h and [GG]0 ! [GG]0h2 processes.

2.4 Summary

To summarize, here is the answer to the question we kicked o↵ with. The SM values
of the Higgs boson cubic and quartic self-couplings are unique to maintain perturbative
unitarity of the theory up to very high scales. If they are perturbed away from the SM,
there are exist tree-level amplitudes with a wrong UV asymptotics. Namely,

• If ��3 6= 0 then the tree-level amplitudes VLVL ! VLVLhn with n � 1 and VLVL !
V 2n
L with n � 2 asymptote to a constant in the UV;

• If ��4 6= 0 then the tree-level amplitudes VLVL ! hn with n � 3 and VLVL !
VLVLhn with n � 2 asymptote to a constant in the UV.

3 A UV picture

Is there any UV theory who’s low energy contains the square root non-analytic terms
in Eq. (2.1)? They certainly need to arise from integrating out particles whose masses
vanish in the limit v ! 0. I could come with the following examples.

3.1 Model A

Consider a modulus scalar field � coupled to the Higgs such that the scalar potential of
the system reads

V (H,�) = m2
H(H

†H) + �(H†H)2 +M�(H†H) +
↵M5

2�
. (3.1)

This is clearly non-renormalizable so strictly speaking I don’t have a UV completion of
the

p
H†H term. The above may or may not be embedded in a UV complete theory -

I’ll think about it later.
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Much more than just S and T...
 Oblique corrections:

Peskin Takeuchi
pre-arxiv

Barbieri et al
hep-ph/0405040

 Equivalent to restricted form of flavor-diagonal vertex 
corrections, 4-fermion operators and W-mass corrections:

Wells Zhang
1510.08462
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Measurements of some oblique parameters may be improved in hadron colliders as 
compared to previous leptonic machines

However, even bigger advantage is that hadron colliders are exploring directions of EFT 
space that are weakly or not at all constrained by lepton machines 

This is obvious for operators whose effects grow with energy, such as 2-quark-2-lepton 
or 4-quark operators. However, important input may also come from lower energies. 

For example, couplings of Z boson to light quarks were not all constrained in model 
independent way in LEP, and constraints can be very much improved using Drell-Yan 
production in proton-proton collisions. 

EFT vs Oblique Parameters

Next, we derive the constraints on the δg’s when all of them are simultaneously present and
a-priori unrelated by the UV theory. Minimizing our χ2 function with respect to δg we obtain the
following central values and 1σ errors:

[δgWe
L ]ii =




−1.00± 0.64
−1.36± 0.59
1.95± 0.79



× 10−2, (4.5)

[δgZe
L ]ii =




−0.26± 0.28
0.1± 1.1
0.16± 0.58



× 10−3, [δgZe
R ]ii =




−0.37± 0.27
0.0± 1.3
0.39± 0.62



× 10−3, (4.6)

[δgZu
L ]ii =




−0.8± 3.1
−0.16± 0.36
−0.28± 3.8



× 10−2, [δgZu
R ]ii =




1.3± 5.1
−0.38± 0.51

×



× 10−2, (4.7)

[δgZd
L ]ii =




−1.0± 4.4
0.9± 2.8
0.33± 0.16



× 10−2, [δgZd
R ]ii =




2.9± 16
3.5± 5.0
2.30± 0.82



× 10−2. (4.8)

The corresponding 20× 20 correlation matrix is given in Appendix B.
As for the off diagonal couplings, we find:

√
|[δgZe

L ]12|2 + |[δgZe
R ]12|2 < 1.2× 10−3,

√
|[δgZe

L ]13|2 + |[δgZe
R ]13|2 < 4.3× 10−3,

√
|[δgZe

L ]23|2 + |[δgZe
R ]23|2 < 4.8× 10−3, (4.9)

where the measured central value of the Z width is used and

√
|[δgZu

L ]13|2 + |[δgZu
R ]13|2 + |[δgZu

L ]23|2 + |[δgZu
R ]23|2 < 1.6× 10−2

(
Γt

1.35GeV

)1/2

, (4.10)

at the 95% CL. Here we take ΓSM
t # 1.35GeV for mt = 173 GeV [53].

Using the above central values δg0, uncertainties δgσ and the correlation matrix ρ one can
reconstruct the dependence of the global χ2 function on the vertex corrections:

χ2 =
∑

ij

[δg − δg0]iσ
−2
ij [δg − δg0]j , (4.11)

where σ−2
ij = [[δgσ]iρij [δgσ]j]−1. In specific extensions of the SM, the vertex corrections will be

functions of a (typically smaller) number of the model parameters. In this case, the global χ2

function can be minimized with respect to the new parameters, and thus limits on this particular
model can be obtained. This way our results can be used to obtain the constraints on any specific
UV model.

From our results for the vertex corrections, Eq. (4.5)–Eq. (4.8), we learn the following:

• Globally, the fit is in a very good agreement with the SM, corresponding to the p-value of
order 40%.
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Production

For the relevant partonic processes of Higgs production at the LHC, the cross section relative
to the SM one depends on the effective theory parameters as follows:

• Gluon fusion (ggh), gg → h:
σggh

σSM
ggh

"
∣∣∣∣1 +

ĉgg
cSMgg

∣∣∣∣
2

, (4.2)

where

ĉgg " cgg +
1

12π2

[
δyuAf

(
m2

h

4m2
t

)
+ δydAf

(
m2

h

4m2
b

)]
,

cSMgg "
1

12π2

[
Af

(
m2

h

4m2
t

)
+ Af

(
m2

h

4m2
b

)]
,

Af(τ) ≡
3

2τ 2
[(τ − 1)f(τ) + τ ] ,

f(τ) ≡

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2

τ > 1
. (4.3)

As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
in QCD because then the large k-factors, approximately common for cgg and δyu, cancel in
the ratio.7 Numerically,

ĉgg " cgg + (8.7δyu − (0.3− 0.3i)δyd)× 10−3, cSMgg " (8.4 + 0.3i)× 10−3, (4.4)

σggh

σSM
ggh

" 1 + 237cgg + 2.06δyu − 0.06δyd. (4.5)

• Vector boson fusion (VBF), qq → hqq:

σV BF

σSM
V BF

" 1 + 1.49δcw + 0.51δcz −




1.08
1.11
1.23



 cw! − 0.10cww −




0.35
0.35
0.40



 cz!

−0.04czz − 0.10cγ! − 0.02czγ
→ 1 + 2δcz − 2.25cz! − 0.83czz + 0.30czγ + 0.12cγγ. (4.6)

The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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Energy Dependence of Higgs production

Production

For the relevant partonic processes of Higgs production at the LHC, the cross section relative
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The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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7 
8
13( ) TeV

Higgs Run1 Higgs Run1&2 Higgs+LEP-TGC Higgs+TGC

�cz -0.15 ±0.21 �0.10± 0.12 �0.059± 0.083 ±
czz 0.66± 0.60 �0.49± 0.34 0.09± 0.32 ±
cz2 �0.35± 0.41 0.18± 0.12 �0.05± 0.14 ±
c�� �0.0080± 0.0087 0.0077± 0.0076 �0.0021± 0.0070 ±
cz� �0.007± 0.058 �0.015± 0.076 �0.020± 0.062 ±
cgg �0.0056± 0.0025 �0.0042± 0.0009 �0.0043± 0.0010 ±
�yu 0.51± 0.37 0.22± 0.15 0.27± 0.14 ±
�yd �0.49± 0.31 �0.46± 0.20 �0.41± 0.17 ±
�ye �0.29± 0.32 �0.10± 0.13 �0.13± 0.14 ±
�z - - �0.054± 0.047 ±

Table 6: EFT Higgs fits. For the Higgs Run1 data I use the results collected in Table 1
together with the correlations quoted by the combination paper. For the Higgs Run2
data correlations are ignored for the time being.

6

Already at LHC, Higgs measurements  at different proton 
collision energy greatly enhance discriminating  power of 
data due to reducing degeneracies among EFT parameters.
Interesting to explore whether running FCC at different 
proton energies is advantageous from EFT point of view 
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SM EFT may well be all there is at the FCC 

It is important to estimate quantitatively how the 
FCC could improve coverage of  parameter space of 
dimension-6 operators  compared to the LHC, lepton 
colliders, and low-energy experiments

Summary
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