SM Higgs measurements at FCC-ep

Masahiro Tanaka Tokyo Institute of Technology On behalf of the LHeC/FCC ep group

17 January 2017

1st FCC Physics Workshop @CERN

Future ep collider

- LHeC
 - 7 TeV proton of LHC and 60 GeV electron. (\s ~ 1.3 TeV)
- FCC ep
 - 50 TeV proton of FCC and 60 GeV electron. ($\sqrt{s} \sim 3.5$ TeV)
- Both plan to create new electron facility.

LHeC/HE-LHC layout

FCC ep layout

Future ep collider

- Higher energy and luminosity than HERA.
- \Rightarrow Extension of Q² and Bjorken x ranges.

Important for new experiment and development of the theory.

Higgs studies at LHC

- Higgs boson was discovered by ATLAS and CMS in 2012.
- ➡Next step is measuring each decay channel more precisely to prove linearity between coupling constant and the mass of each particle.

- H->bb channel is challenging due to large number of QCD bkg.
- How about at electron proton collider ?

Deep Inelastic ep Scattering

- 'Clean' events with fewer hadron background than pp collider.
- No pileup. (about 1 event at FCC ep.)
- Advantage for $H \rightarrow bb$ (cc) study using Deep Inelastic Scattering events.

Higgs at ep collider

Neutral current (NC) H→bb

• We focus currently on CC: $H \rightarrow bb$ because the cross section is 4 - 5 times larger than NC: $H \rightarrow bb$.

Ep Higgs in simulation

MadGraph/MadEvent

- Parton level event generation.
- Calculation of cross section.

Generator setup

- LHeC: 7 TeV proton & 60 GeV electron.
- FCC ep: 50 TeV proton & 60 GeV electron.

Pythia (modified for ep)

- Fragmentation.
- Hadronization.

Delphes

Detector simulation.

$H \rightarrow bb$ and $H \rightarrow cc$ event selection

 Both cut based and BDT based analysis are pursued using LHeC analysis strategies so far.

Detector setup

 Reasonable setups for our own FCC ep considering current on-going experiment like ATLAS or CMS.

B-tag performance

- B-jet: 60%
- C-jet: 10%
- Light-jet: 1%

Event selection for H→bb

Event selection for H \rightarrow bb

Forward jet tagging

3 jets mass (GeV)

Cut based results H→bb at LHeC and FCC ep

• Assumed 1000 fb⁻¹ of statistics. (~10 years running for LHeC.)

1()

Heavy flavor tagging efficiency

- Significant improvement in charm jet tagging efficiency from 23-24% (R = 0.9, nominal) to 30% using R = 0.5 anti-kt jets and half nominal vertex resolution at light jet tagging efficiency 5%.
- \cdot Charm tagging is very sensitive to vertex resolution.
 - \rightarrow double resolution set-up (in pink) clearly disfavoured.

B-tagging efficiency

U Klein and D Hampson

 We can get less light jet contamination at 60% b-tag efficiency using smaller jet radii.

BDT results H→cc at LHeC

• Assumed 1000 fb⁻¹ of statistics.

U Klein and D Hampson

Hcc signal events: 474 $S/\sqrt{S+B} = 12.8$ $\rightarrow \kappa(Hcc) = 4\%$ for 1000 fb⁻¹

Clear potential to access the Higgs to charm decay channel.

Coupling constant measurement at future ep collider 14

- Estimate measurement error of coupling constant from BDT result.
- Assume 1 ab⁻¹ respectively.

	LHeC	DLHC	FCC ep
	(~1.3 TeV)	(~1.8 TeV)	(~3.5 TeV)
Hbb	0.5%	0.3%	0.2%
Hcc	4%	2.8%	1.8%

Summary

- SM Higgs measurement at future ep collider FCC ep.
- Plan to make new electron facility.
 (Electron energy is 60 GeV at current plan.)
- Precision of coupling constants are estimated to be
 - Hbb: 0.2%
 - Hcc: 1.8%
 - assuming 1 ab⁻¹ at FCC ep. (Statistics error only.)
 - ➡ Big potential for measurements of coupling.
- Next step
- Other decay channels to enhance complementarity between ep and pp.
- \cdot CP properties studying azimuthal difference. ($\Delta\phi$ between forward jet and missing ET.)

Backup

Future ep collider

- Electron facility.
 - ERL (Energy Recovery Linac).
 - Combination of linear accelerator and rings for turning.
 - Accelerated to 60 GeV.

- Detector plan for future ep collider.
 - Asymmetric layout for unbalanced energy of proton and electron.

