Effective field theories in future Higgs factories

Jiayin Gu

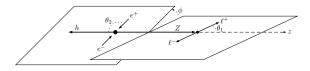
DESY/IHEP

1st FCC Physics Workshop January 17, 2016

current work with G. Durieux, C. Grojean, K. Wang

Introduction

- ▶ Goal: Perform a global fit of EFT parameters to the data from a future (e⁺e[−]) Higgs factory.
- ▶ **Problem:** One may get poor results from the global fit due to a large degeneracy among many parameters.
- Solution: Include all possible measurements (and also make reasonable assumptions).


Future e^+e^- colliders

- Circular colliders
 - ▶ The Future Circular Collider (FCC-ee) at CERN.
 - ▶ The Circular Electron-Positron Collider (CEPC) in China.
 - ▶ CEPC: $5\,\mathrm{ab^{-1}}$ data at $240\,\mathrm{GeV}$ (Higgs factory), likely to also run at $350\,\mathrm{GeV}$ (luminosity undecided, we use a conservative value of $200\,\mathrm{fb^{-1}}$). Possible run at Z-pole?
 - FCC-ee can potentially do even better.
- Linear collider
 - The International Linear Collider (ILC) in Japan.
 - With luminosity upgrades, the ILC can collect $2 \, \mathrm{ab^{-1}}$ at 250 GeV, $200 \, \mathrm{fb^{-1}}$ at 350 GeV and $4 \, \mathrm{ab^{-1}}$ at 500 GeV.
 - Longitudinal beam polarizations ($|P(e^-)| = 80\%$, $|P(e^+)| = 30\%$).

What measurements can we include?

- ▶ Rate measurements in $e^+e^- \to hZ$, both $\sigma(hZ)$ and $\sigma(hZ) \times BR(h \to xx)$.
- ▶ Angular distributions in $e^+e^- \rightarrow hZ$.
- lacksquare WW fusion production of Higgs $(e^+e^ightarrow
 uar{
 u}h)$.
- $ightharpoonup e^+e^ightarrow WW$. (A lot of "free data" at 240 GeV.)
- Measurements at higher energies and/or with beam polarizations.
- Electroweak precision measurements at Z-pole (not included in our study but may have an impact).

angular observables in $e^+e^- \rightarrow hZ$

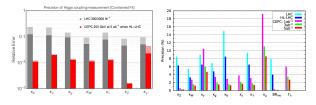
- Angular distributions in $e^+e^- \rightarrow hZ$ can provide information in addition to the rate measurement alone.
- Previous studies
 - ► [arXiv:1406.1361] Beneke, Boito, Wang
 - [arXiv:1512.06877] N. Craig, JG, Z. Liu, K. Wang
- 6 independent asymmetry observables from 3 angles

$$\mathcal{A}_{\theta_1} \ , \ \mathcal{A}_{\phi}^{(1)} \ , \ \mathcal{A}_{\phi}^{(2)} \ , \ \mathcal{A}_{\phi}^{(3)} \ , \ \mathcal{A}_{\phi}^{(4)} \ , \ \mathcal{A}_{c\theta_1,c\theta_2} \ .$$

 Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates).

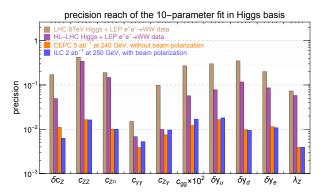
A few remarks on the measurements

- ► The measurements of the decay $h \to Z\gamma$ plays an important role in the global fit. ($\sigma(hZ) \times BR(h \to Z\gamma)$ estimated to be $\sim 25\%$ at CEPC.)
- $e^+e^- \rightarrow \nu \bar{\nu} h$
 - At 240 GeV it is hard to separate the WW fusion process from $e^+e^- \to hZ$, $Z \to \nu\bar{\nu}$.
 - It is not consistent to focus on one process and treat the other one as SM-like!
- $ightharpoonup e^+e^-
 ightarrow WW$
 - 2 of the 3 aTGCs are generated by operators that also contribute to Higgs physics.
 - $\sigma(WW) \sim 10^2 \times \sigma(hZ)$ at 240 GeV.
 - Dedicated experimental studies are needed to determine the systematic uncertainties and extract the constraints on aTGCs.
 - If e⁺e⁻ → WW is measured at the same level of precision with the Z-pole measurements, the "TGC dominance assumption" may no longer be valid.

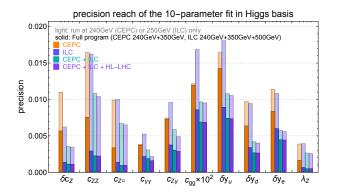

The "10-parameter" framework in the Higgs basis

- Start with all the D6 operators that can contribute to the above measurements.
- Assume the new physics
 - is CP-even,
 - does not generate dipole interaction of fermions,
 - ▶ is flavor universal (for Yukawa couplings, we assume $\delta y_u = \delta y_c = \delta y_t$, etc.),
 - has no corrections to Z-pole observables and W mass (more justified if the machine will run at Z-pole).
- ▶ We are left with 10 operators, parameterized in the Higgs basis by:

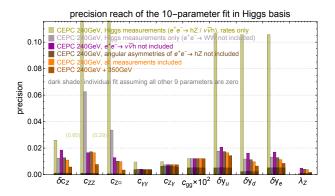
$$\delta c_{Z}$$
, $c_{Z\square}$, $c_{Z\square}$, $c_{\gamma\gamma}$, $c_{Z\gamma}$, c_{gg} , δy_{u} , δy_{d} , δy_{e} , λ_{Z} .


- Strong independent constraints can be obtained for all 10 coefficients!
- [arXiv:1505.00046] Falkowski
 [arXiv:1508.00581] Falkowski, Gonzalez-Alonso, Greljo, Marzocca

EFT vs. the " κ -frame"


- Conventionally, many studies of Higgs couplings use the so-called "κ-frame."
- A framework based on EFT is more general and consistent than the " κ -frame."
 - It allows couplings with different Lorentz structures, such as $hZ^{\mu\nu}Z_{\mu\nu}$ or $hZ_{\mu}\partial_{\nu}Z^{\mu\nu}$ (parameterized by c_{ZZ} and $c_{Z\square}$).
 - ▶ Gauge invariance is built in the parameterization.
- More parameters => more flat directions! Additional measurements are essential in resolving the flat directions.

Results of the "10-parameter" fit


- ▶ Much better than LHC Higgs + LEP WW results!
- ▶ LHC diboson (TGC) results are not included at the moment.

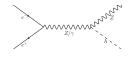
Results of the "10-parameter" fit

- Complementarity!
- Measurements at higher \sqrt{s} can be very helpful in resolving

The importance of combining all measurements

- The results are much worse if we only include the rates of Higgs measurements alone!
- ▶ There is some overlap in the information from different measurements.

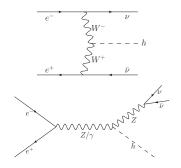
Want list for the future

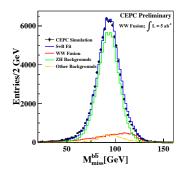

- Experimental studies of CEPC/FCC-ee on the extractions of aTGCs from $e^+e^- \rightarrow WW$ with realistic systematic uncertainties.
- A better study to determine the reach of HL-LHC?
- ► Extend the 10-parameter framework
 - ▶ Include CP-odd operators and relax the assumptions on flavor structure.
 - Include Higgs invisible/exotic decay?
 - Loop corrections (e.g. loop correction to the hZZ vertex from Higgs trilinear couplings).
- Combine Higgs, diboson and Z-pole data and do a MEGA global fit? (a lot of work!)
- ► FCC-ee vs. CLIC ?

Conclusion

- After the discovery of Higgs at the LHC, a plausible "next step" is to build an e^+e^- collider to perform Higgs precision measurements.
- Many measurements can be performed!
 - rate measurements in $e^+e^- \rightarrow hZ$ (production and Higgs decay),
 - angular distributions in $e^+e^- \rightarrow hZ$,
 - ▶ WW fusion $(e^+e^- \rightarrow \nu \bar{\nu} h)$,
 - $e^+e^- \rightarrow WW$,
 - measurements at different energies or with different beam polarization.
- By combining all the available measurements and making reasonable assumptions on the new physics, we can obtain strong independent constraints on all the relevant dimension-6 operators!
- Still a lot of work to be done!

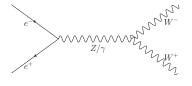
backup slides

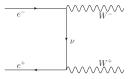

rate measurements in $e^+e^- o hZ$



	precision	
meausrement	CEPC	ILC
	$[240 \text{GeV}, 5 \text{ab}^{-1}]$	[250 GeV, $2 \mathrm{ab}^{-1}$]
$\sigma(hZ)$	0.50%	0.71%
	$\sigma(hZ) imes BR$	
$h o b \overline{b}$	0.21% (0.24%)	0.42%
h o car c	2.5%	2.9%
h o gg	1.3%	2.5%
h o au au	1.0%	1.1%
$h o WW^*$	1.0%	2.3%
$h o ZZ^*$	4.3%	6.7%
$h o\gamma\gamma$	9.0%	12%
$ extstyle h o \mu \mu$	17%	25%
$h o Z\gamma$	$\sim 25\%$	$\sim 34\%$

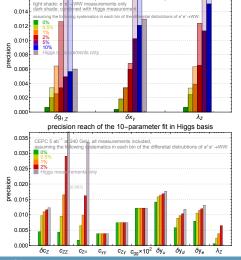
- Rates can be measured very precisely!
- ▶ Both $\sigma(hZ)$ and $\sigma(hZ) \times BR$ can be measured.
- ▶ $h \rightarrow Z\gamma$ is important!


$e^+e^- ightarrow u \bar{ u} h$



- It is hard to separate the WW fusion process from $e^+e^- \to hZ, Z \to \nu\bar{\nu}$ at 240 GeV.
- It is not consistent to focus on one process and treat the other one as SM-like!
- ▶ We analyze the combined $e^+e^- \to \nu \bar{\nu} h$ process, assuming new physics can contribute to both processes. (The $h \to b \bar{b}$ decay channel is used.)

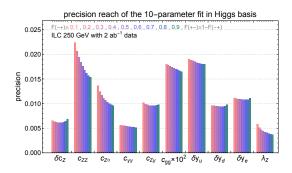
$e^+e^- o WW$



- $e^+e^- \to WW$ offers a great way to probe the anomalous triple gauge couplings (aTGCs, parameterized by $\delta g_{1,Z}$, $\delta \kappa_{\gamma}$, λ_{Z}).
- $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$ are related to Higgs observables.
- ▶ CEPC with $5\,{\rm ab}^{-1}$ data at 240 GeV can collect $\sim 9 \times 10^7~e^+e^- \to WW$ events.
- With such large statistics, the aTGCs can be very well constrained ([1507.02238] Bian, Shu, Zhang), but with two potential issues:
 - Systematic uncertainties can be important!
 - ▶ If $e^+e^- \rightarrow WW$ is measured more precisely than the Z-pole measurements, is it still ok to assume the fermion gauge couplings are SM-like?

The interplay between Higgs and TGC

precision reach of aTGCs with CEPC 5 ab-1 at 240 GeV



$$\delta g_{1,Z}, \ \delta \kappa_{\gamma} \leftrightarrow$$

$$c_{ZZ}, \ c_{Z\square}, \ c_{\gamma\gamma}, \ c_{Z\gamma}$$

- We try different assumptions on the systematic uncertainties (in each bin with the differential distribution divided into 20 bins).
- Detailed study of e⁺e⁻ → WW required to estimate the systematic uncertainties!

What's the best way to divide the total luminosity into runs with different polarization?

- Two polarization configurations are considered, $P(e^-, e^+) = (-0.8, +0.3)$ and (+0.8, -0.3).
- ▶ F(-+) in the range of 0.6-0.8 gives an optimal overall results.
- Runs with different polarizations probe different combinations of EFT parameters in Higgs production. So do runs at different energies.

Asymmetry observables

$$\mathcal{A}_{\theta_{1}} = \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_{1} \operatorname{sgn}(\cos(2\theta_{1})) \frac{d\sigma}{d\cos\theta_{1}},$$

$$\mathcal{A}_{\phi}^{(1)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(2)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin(2\phi)) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(3)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(4)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi},$$

$$(1)$$

$$\mathcal{A}_{c\theta_1,c\theta_2} = \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos\theta_1) \int_{-1}^{1} d\cos\theta_2 \operatorname{sgn}(\cos\theta_2) \frac{d^2\sigma}{d\cos\theta_1 d\cos\theta_2}, \quad (2)$$

The "10-parameter" framework in the Higgs basis

The relevant terms in the EFT Lagrangian are

$$\mathcal{L} \supset \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{tgc} , \qquad (3)$$

the Higgs couplings with a pair of gauge bosons

$$\mathcal{L}_{hVV} = \frac{h}{v} \left[(1 + \delta c_W) \frac{g^2 v^2}{2} W_{\mu}^+ W_{\mu}^- + (1 + \delta c_Z) \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z_{\mu} \right.$$

$$\left. + c_{WW} \frac{g^2}{2} W_{\mu\nu}^+ W_{\mu\nu}^- + c_{W\square} g^2 (W_{\mu}^- \partial_{\nu} W_{\mu\nu}^+ + \text{h.c.}) \right.$$

$$\left. + c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^3 G_{\mu\nu}^2 + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{Z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu} \right.$$

$$\left. + c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{Z\square} g^2 Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma\square} gg' Z_{\mu} \partial_{\nu} A_{\mu\nu} \right]. \tag{4}$$

The "10-parameter" framework in the Higgs basis

 Not all the couplings are independent, for instance one could write the following couplings as

$$\begin{split} &\delta c_{W} = \delta c_{Z} + 4\delta m\,, \\ &c_{WW} = c_{ZZ} + 2s_{\theta_{W}}^{2} c_{Z\gamma} + s_{\theta_{W}}^{4} c_{\gamma\gamma}\,, \\ &c_{W\square} = \frac{1}{g^{2} - g'^{2}} \left[g^{2} c_{Z\square} + g'^{2} c_{ZZ} - e^{2} s_{\theta_{W}}^{2} c_{\gamma\gamma} - (g^{2} - g'^{2}) s_{\theta_{W}}^{2} c_{Z\gamma} \right]\,, \\ &c_{\gamma\square} = \frac{1}{g^{2} - g'^{2}} \left[2g^{2} c_{Z\square} + (g^{2} + g'^{2}) c_{ZZ} - e^{2} c_{\gamma\gamma} - (g^{2} - g'^{2}) c_{Z\gamma} \right]\,, \end{split} \tag{5}$$

Assuming flavor universality, the Yukawa couplings are written as

$$\mathcal{L}_{hff} = -\frac{h}{v} \sum_{f \in u, d, e} \sum_{i=1}^{3} m_{f_i} (1 + \delta y_f) \bar{f}_{R,i} f_{L,i} + \text{h.c.}, \qquad (6)$$

$$\mathcal{L}_{\text{tgc}} = igs_{\theta_{W}} A^{\mu} (W^{-\nu} W^{+}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu})
+ ig(1 + \delta g^{Z}_{1}) c_{\theta_{W}} Z^{\mu} (W^{-\nu} W^{+}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu})
+ ig \left[(1 + \delta \kappa_{Z}) c_{\theta_{W}} Z^{\mu\nu} + (1 + \delta \kappa_{\gamma}) s_{\theta_{W}} A^{\mu\nu} \right] W^{-}_{\mu} W^{+}_{\nu}
+ \frac{ig}{m_{W}^{2}} (\lambda_{Z} c_{\theta_{W}} Z^{\mu\nu} + \lambda_{\gamma} s_{\theta_{W}} A^{\mu\nu}) W^{-\rho}_{\nu} W^{+}_{\rho\mu},$$
(7)

- $V_{\mu\nu} \equiv \partial_{\mu} V_{\nu} \partial_{\nu} V_{\mu}$ for $V = W^{\pm}$, Z, A,. Imposing Gauge invariance one obtains $\delta \kappa_{Z} = \delta g_{1,Z} t_{\theta_{W}}^{2} \delta \kappa_{\gamma}$ and $\lambda_{Z} = \lambda_{\gamma}$.
- ▶ 3 aTGCs parameters $\delta g_{1,Z}$, $\delta \kappa_{\gamma}$ and λ_{Z} , 2 of them related to Higgs observables by

$$\delta g_{1,Z} = \frac{1}{2(g^2 - g'^2)} \left[-g^2(g^2 + g'^2) c_{Z\square} - g'^2(g^2 + g'^2) c_{ZZ} + e^2 g'^2 c_{\gamma\gamma} + g'^2(g^2 - g'^2) c_{Z\gamma} \right],$$

$$\delta \kappa_{\gamma} = -\frac{g^2}{2} \left(c_{\gamma\gamma} \frac{e^2}{g^2 + g'^2} + c_{Z\gamma} \frac{g^2 - g'^2}{g^2 + g'^2} - c_{ZZ} \right). \tag{8}$$

A basis with D6 operators

$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} \mathcal{H}^{2})^{2}$	$\mathcal{O}_{GG} = g_s^2 \mathcal{H} ^2 G_{\mu\nu}^A G^{A,\mu\nu}$
$\mathcal{O}_{WW} = g^2 H ^2 W_{\mu\nu}^a W^{a,\mu\nu}$	$\mathcal{O}_{y_u} = y_u \mathcal{H} ^2 \bar{Q}_L \tilde{\mathcal{H}} u_R$
$\mathcal{O}_{BB}={g'}^2 {H} ^2B_{\mu u}B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$
$\mathcal{O}_{HW} = i g(D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a}$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L He_R$
$\mathcal{O}_{HB} = i g' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu}$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a \nu}_{\mu} W^{b}_{\nu \rho} W^{c \rho \mu}$