

Rare decays in HH at FCC-hh with 100 TeV

Michael Spannowsky

IPPP, Durham University

Motivation to look for di-Higgs final states

- Measure Higgs selfcoupling of the Standard Model
 - stability of the Higgs potential
 - Order of Phase Transition

see also talks by M. Ramsey-Musolf and B. Di Micco

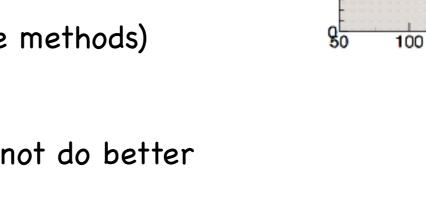
- Observe di-Higgs final states, possibly enhanced in BSM
 - Resonant and loop-enhanced di-Higgs production predicted in many BSM models

Current status for expected sensitivity at HL-LHC and 100 TeV

• ATLAS and CMS performed studies for HL-LHC

 $b \overline{b} \gamma \gamma$ and $b \overline{b} \tau \tau$ predicting

 $b\overline{b}\gamma\gamma$: 1.3 σ for ATLAS and 1.6 σ for CMS


 $b\overline{b} au au$: 0.60 for ATLAS and 0.90 for CMS (still conservative methods)

bbWW rather insensitive...

still, future FCC/ILC might not do better

Predicted sensitivity for cross section and selfcoupling at 100 TeV

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings
$HH \rightarrow b \overline{b} \gamma \gamma$	3%	$\lambda_3 \in [0.97, 1.03]$
$HH \rightarrow b \overline{b} b \overline{b}$	5%	$\lambda_3 \in [0.9, 1.5]$

Events/2.5 GeV

25

20

15

10

ATLAS Simulation Preliminary

H(bb)H(γγ)

 $Z(bb)H(\gamma\gamma)$

bБН(уу)

√s=14 TeV, 3000 fb

Statistic States

150

200

m,, [GeV]

250

ttH(yy)

Others

tī<u>X</u> bbγγ

Motivation to look for rare decays

- Many models predict:

 - Lepton and quark FCNCs e.g. H-> tau mu or H-> b s
 - vector-like fermions
 e.g. enhanced H-> Z gamma
- Higgs portal one of few portals that allow dark sector being uncharged under SM, e.g. $\Delta \mathcal{L} = \frac{\zeta}{2} s^2 |H|^2 \quad \text{or} \quad \Delta \mathcal{L} = \frac{\mu}{\Lambda^2} |H|^2 \bar{\psi} \psi$
- Events produced in ; $Br(h \rightarrow BSM) = 10\%$ before acceptance, trigger and reconstruction efficiencies [Curtin et al '12]

Production	$\sigma_{7~{ m TeV}}~{ m (pb)}$	$N_{ m ev}^{10\%},5~{ m fb}^{-1}$	$\sigma_{8 {\rm TeV}} ~{ m (pb)}$	$N_{\rm ev}^{10\%},20~{\rm fb}^{-1}$	$\sigma_{14~{ m TeV}}$ (pb)	$N_{ m ev}^{10\%},300~{ m fb}^{-1}$
ggF	15.13	7,600	19.27	38,500	49.85	$1.5 imes10^6$
VBF	1.22	610	1.58	3,200	4.18	125,000
hW [±]	0.58	290	0.70	1,400	1.5	45,000
$hW^{\pm}(\ell^{\pm} u)$	$\textbf{0.58} \cdot \textbf{0.21}$	62	$\boldsymbol{0.70\cdot 0.21}$	300	$1.5\cdot 0.21$	9,600
hZ	0.34	170	0.42	830	0.88	26,500
$hZ(\ell^+\ell^-)$	$0.34 \cdot 0.067$	11	$0.42 \cdot 0.067$	56	$0.88 \cdot 0.067$	1,800
tīh	0.086	43	0.13	260	0.61	18,300

possible sensitivity at level of BR~10⁻⁶ with 300 ifb

Event rate large, yet decays rather weakly limited. Leave no stone unturned!

FCC Physics Workshop

Large number of possibilities for rare Higgs decays

[Curtin et al '12]

,	Decay Topologies	Decay mode F_i	Decay Topologies	Decay mode \mathcal{F}_i
\prec	h ightarrow 2	$h \rightarrow \not\!\!\!E_T$	$h \rightarrow 2 \rightarrow 4$	$h ightarrow (b ar{b}) (b ar{b})$
	$h \rightarrow 2 \rightarrow 3$	$h \rightarrow \gamma + \not \!\! E_T$		$h ightarrow (b ar b) (au^+ au^-)$
		$h ightarrow (bar{b}) + ot\!$		$h ightarrow (b ar b) (\mu^+ \mu^-)$
		$h \rightarrow (jj) + \not\!\!\!E_T$		$h ightarrow(au^+ au^-)(au^+ au^-)$
	$ \longrightarrow $	$h ightarrow(au^+ au^-)+ ot\!$	\rightarrow	$h ightarrow (au^+ au^-)(\mu^+ \mu^-)$
		$h ightarrow (\gamma \gamma) + ot\!$		$h \rightarrow (jj)(jj)$
		$h \rightarrow (\ell^+ \ell^-) + E_T$		$h \rightarrow (jj)(\gamma\gamma)$
	$h \rightarrow 2 \rightarrow 3 \rightarrow 4$	$h ightarrow (bar{b}) + E_{ m T}$		$h ightarrow (jj)(\mu^+\mu^-)$
	\langle	$h \rightarrow (jj) + \not\!\!E_{\mathrm{T}}$		$h ightarrow (\ell^+ \ell^-) (\ell^+ \ell^-)$
	$\langle \rangle$	$h \rightarrow (\tau^+ \tau^-) + E_T$		$h ightarrow (\ell^+ \ell^-)(\mu^+ \mu^-)$
	\rightarrow	$egin{array}{c} h o (\gamma \gamma) + ot\!$		$h ightarrow (\mu^+\mu^-)(\mu^+\mu^-)$
		$h \rightarrow (\ell^+ \ell^-) + \not\!$		$h \rightarrow (\gamma \gamma)(\gamma \gamma)$
	$h \rightarrow 2 \rightarrow (1+3)$	$ \begin{array}{c} n \rightarrow (\mu \ \mu \) + \mu_{\rm T} \\ h \rightarrow b\bar{b} + \not\!\!\!E_{\rm T} \end{array} $		$h \rightarrow \gamma \gamma + E_{\rm T}$
	$n \rightarrow 2 \rightarrow (1 + 0)$	$h \rightarrow jj + E_{\mathrm{T}}$	$h \rightarrow 2 \rightarrow 4 \rightarrow 6$	$h ightarrow (\ell^+ \ell^-) (\ell^+ \ell^-) + E_{ m T}$
	\leftarrow	$h \rightarrow \tau^+ \tau^- + E_T$	$n \rightarrow 2 \rightarrow 4 \rightarrow 0$	
	\rightarrow	$h \rightarrow \gamma \gamma + E_T$	- L . O C	$h \to (\ell^+ \ell^-) + \not\!\!E_{\rm T} + X$
		$h ightarrow \ell^+ \ell^- + E_{ m T}$	$h \rightarrow 2 \rightarrow 6$	$h \rightarrow \ell^+ \ell^- \ell^+ \ell^- + E_{\mathrm{T}}$
				$h \rightarrow \ell^+ \ell^- + E_T + X$

Large number of possibilities for rare Higgs decays [Curtin et al '12]

/	Decay Topologies	Decay mode \mathcal{F}_i	Decay Topologies	Decay mode \mathcal{F}_i
\sim	h ightarrow 2	$h \rightarrow \not\!$	$h \rightarrow 2 \rightarrow 4$	$h ightarrow (b ar{b}) (b ar{b})$
	h ightarrow 2 ightarrow 3	$h ightarrow \gamma + ot\!$		$h ightarrow (b ar b) (au^+ au^-)$
		$h ightarrow (b \overline{b}) + ot\!$		$h ightarrow (b ar b) (\mu^+ \mu^-)$
	\langle	$h ightarrow (jj) + E_{ m T}$		$h ightarrow (au^+ au^-) (au^+ au^-)$
	\rightarrow	$h ightarrow (au^+ au^-) + ot\!$		$h ightarrow (au^+ au^-)(\mu^+ \mu^-)$
		$h ightarrow (\gamma \gamma) + ot\!$	Good	$h \rightarrow (jj)(jj)$
	$h \rightarrow 2 \rightarrow 3 \rightarrow 4$	$h \rightarrow (\ell^+ \ell^-) + \not\!\!\!E_T$ $h \rightarrow (b\bar{b}) + \not\!\!\!\!E_T$	sensitivity	$h \rightarrow (jj)(\gamma\gamma)$
	10 7 2 7 0 7 4			$h ightarrow (jj)(\mu^+\mu^-)$
	\langle	$h ightarrow (\tau^+ au^-) + E_{ m T}$	single H and	$h ightarrow (\ell^+ \ell^-) (\ell^+ \ell^-)$
		$h ightarrow (\gamma \gamma) + E_{ m T}$	associated	$h ightarrow (\ell^+ \ell^-)(\mu^+ \mu^-)$
		$h ightarrow (\ell^+ \ell^-) + ot\!$	production	$h ightarrow(\mu^+\mu^-)(\mu^+\mu^-)$
		$h ightarrow(\mu^+\mu^-)+ ot\!$	production	$h ightarrow (\gamma \gamma) (\gamma \gamma)$
	$h \rightarrow 2 \rightarrow (1+3)$	$h ightarrow b \overline{b} + ot\!$	5	$h ightarrow\gamma\gamma+{ ot\!\!/}{E_{ m T}}$
		$h ightarrow jj + ot\!$	$h \rightarrow 2 \rightarrow 4 \rightarrow 6$	$h ightarrow (\ell^+ \ell^-) (\ell^+ \ell^-) + E_T$
		$egin{array}{c} h o au^+ au^- + ot\!$		$h ightarrow (\ell^+ \ell^-) + ot\!$
		$egin{array}{c} h o \gamma \gamma + ot\!$	$h \rightarrow 2 \rightarrow 6$	$\begin{array}{c} h \rightarrow (\ell^+\ell^-) + \not\!$
		$n \rightarrow \ell^- \ell^- + \psi_{\rm T}$	-	$h ightarrow \ell^+ \ell^- + \not\!\!\!E_{ m T} + X$

Large number of possibilities for rare Higgs decays

[Curtin et al '12]

/	Decay Topologies	Decay mode \mathcal{F}_i	Decay Topologies	Decay mode \mathcal{F}_i
\sim	h ightarrow 2	$h \rightarrow \not\!$	$h \rightarrow 2 \rightarrow 4$	$h \rightarrow (b\bar{b})(b\bar{b})$
	$h \to 2 \to 3$	$h \rightarrow \gamma + E_T$		$h ightarrow (b ar b) (au^+ au^-)$
	_	$h ightarrow (bar{b}) + E_{ m T}$		$h ightarrow (b ar b) (\mu^+ \mu^-)$
	$\langle \rangle$	$h \rightarrow (jj) + \not\!\!E_{\mathrm{T}}$	hadronic and	$h ightarrow (au^+ au^-) (au^+ au^-)$
	\rightarrow	$h ightarrow (au^+ au^-) + E_{ m T}$	<	$h ightarrow (au^+ au^-)(\mu^+ \mu^-)$
		$egin{array}{c} h ightarrow (\gamma \gamma) + ot\!$	MET decays	$h \rightarrow (jj)(jj)$
	$h \rightarrow 2 \rightarrow 3 \rightarrow 4$	$h \rightarrow (b\bar{b}) + \not \!$		$h ightarrow (jj)(\gamma\gamma)$
		$h \rightarrow (jj) + \not\!\!\!E_{\mathrm{T}}$	difficult in	$h ightarrow (jj)(\mu^+\mu^-)$
	\langle	$h ightarrow(au^+ au^-)+ ot\!$		$h ightarrow (\ell^+ \ell^-) (\ell^+ \ell^-)$
		$h ightarrow (\gamma \gamma) + ot\!$	single H	$h ightarrow (\ell^+ \ell^-)(\mu^+ \mu^-)$
		$h ightarrow (\ell^+ \ell^-) + E_{ m T}$	production	$h ightarrow(\mu^+\mu^-)(\mu^+\mu^-)$
		$h ightarrow (\mu^+\mu^-) + ot\!$	production	$h ightarrow (\gamma \gamma) (\gamma \gamma)$
	$h \rightarrow 2 \rightarrow (1+3)$	$h ightarrow bb + ot\!$	-	$h ightarrow\gamma\gamma+ ot\!$
	\leftarrow	$h \rightarrow jj + \not\!\!\!E_{\mathrm{T}}$	$h \rightarrow 2 \rightarrow 4 \rightarrow 6$	$h ightarrow (\ell^+ \ell^-) (\ell^+ \ell^-) + ot\!$
		$h \rightarrow \tau^+ \tau^- + E_T$		$h ightarrow (\ell^+ \ell^-) + ot\!$
		$egin{array}{c} h o \gamma \gamma + ot\!$	$h \rightarrow 2 \rightarrow 6$	$h \rightarrow \ell^+ \ell^- \ell^+ \ell^- + \not\!\!\!E_T$
		10 10 0 1401		$h \to \ell^+ \ell^- + \not\!\!\!E_{\rm T} + X$

Rare decays from SM di-Higgs production

- Rare decays often statistics limited
- Production CS for HH at 100 TeV machine increased 40 times over LHC

[De Florian, Mazzitelli '13]

	E_{cm}	$14 { m TeV}$	100 TeV
	$\sigma_{ m NNLO}$	$40.2~{\rm fb}$	1638 fb
3	Scale [%]	+8.0 - 8.7 (+5.9 - 5.8
	PDF [%]	+4.0 - 4.0	+2.3 - 2.6
	PDF+ $\alpha_{\rm S}$ [%]	+7.2 - 7.1	+5.8 - 6.0
J		-	

one of largest enhancements compared to other channels

	$gg \to H$	VBF	HW^{\pm}	HZ	$t\bar{t}H$
	(Sect 3.1)	(Sect 3.5)	(Sect 3.4)	(Sect 3.4)	(Sect 3.6)
σ(p b)	802	69	15.7	11.2	32. 1
$\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV})$	16.5	1 6.1	10.4	11.4	52.3

 However, within SM other production mechanisms for single Higgs production larger, e.g. H, HW, HZ, ttH

rare decays likely to show up in other channels first

• Of course, if rare decays enhanced and clean, can help to measure hhh

FCC Physics Workshop	CERN	8	Michael Spannowsky	18.01.2016
----------------------	------	---	--------------------	------------

Two directions to look into:

1) Can scalar interactions be discovered or measured using rare decays?

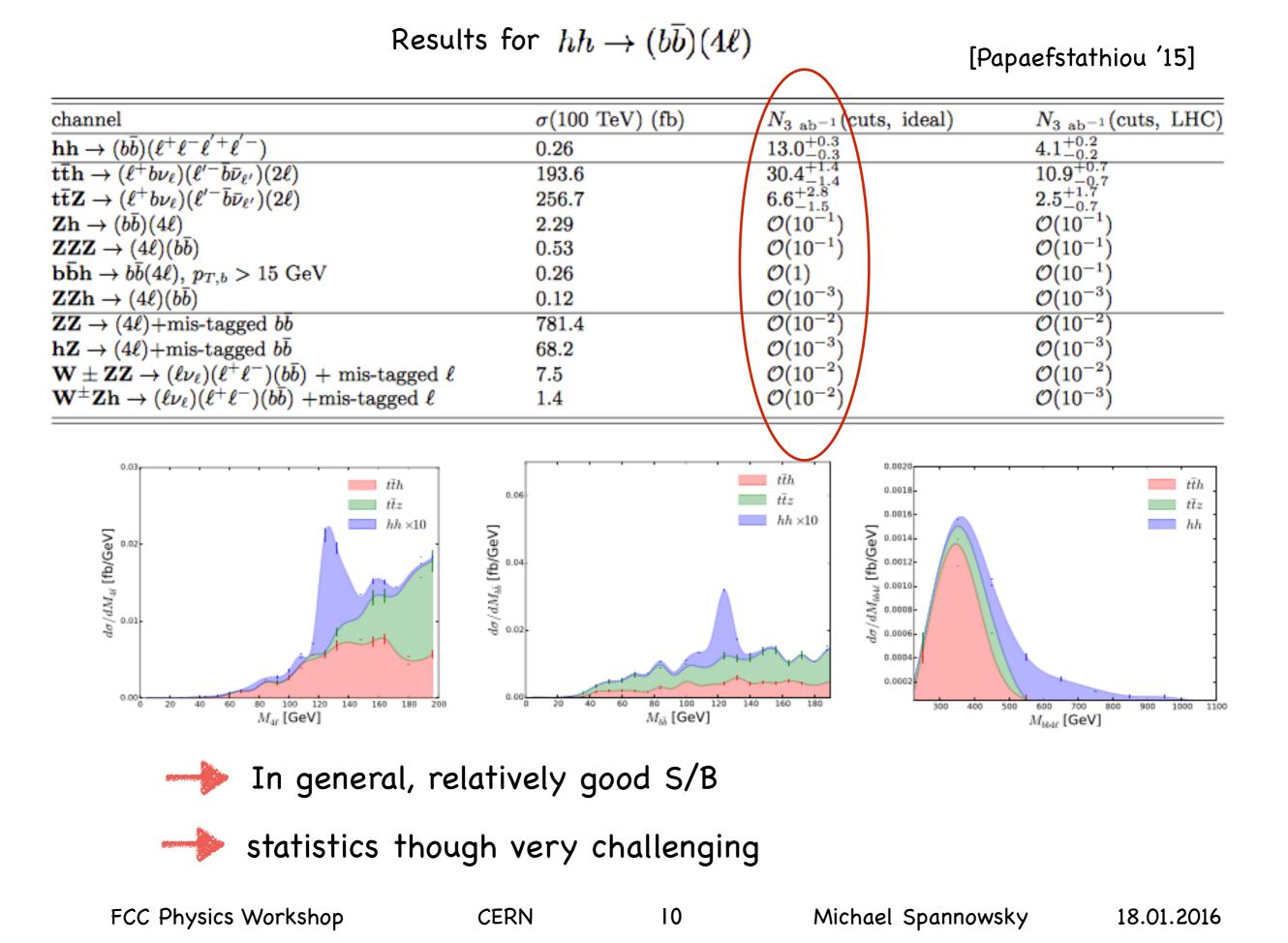
2) Does discovery of rare decays benefit from di-Higgs final states?

1) At 100 TeV new decay modes become accessible, e.g. $hh \rightarrow (b\bar{b})(4\ell)$

channel	BR	$\sigma(14 \text{ TeV}) \text{ (fb)}$	$\sigma(100 \text{ TeV}) \text{ (fb)}$	
$hh \rightarrow (b\bar{b})(ZZ) \rightarrow (b\bar{b})(\ell^+\ell^-\ell^{'+}\ell^{'-})$	0.016%	0.006	0.26	at 100 TeV all
$hh \rightarrow (b\bar{b})(Z\gamma) \rightarrow (b\bar{b})(\ell^+\ell^-\gamma)$	0.013%	0.005	0.21	rates
$hh \rightarrow (b\bar{b})(W^+W^-) \rightarrow (b\bar{b})(\ell^+\ell'^- + \not E)$	1.658%	0.667	27.16	appreciably
$hh \rightarrow (b\bar{b})(\tau^+\tau^-) \rightarrow (b\bar{b})(\ell^+\ell'^- + E)$	0.893%	0.360	14.63	
$hh ightarrow (b \overline{b}) (\mu^+ \mu^-)$	0.025%	0.010	0.42	large
$hh ightarrow (bb)(\gamma\gamma)$	0.263%	0.106	4.31	

• bbZZ -> bb 4l:

• One Higgs decays into major mode other very clean


[Papaefstathiou '15]

Can extrapolate result to other decay modes

9

• Can be simulated rather reliably

CERN

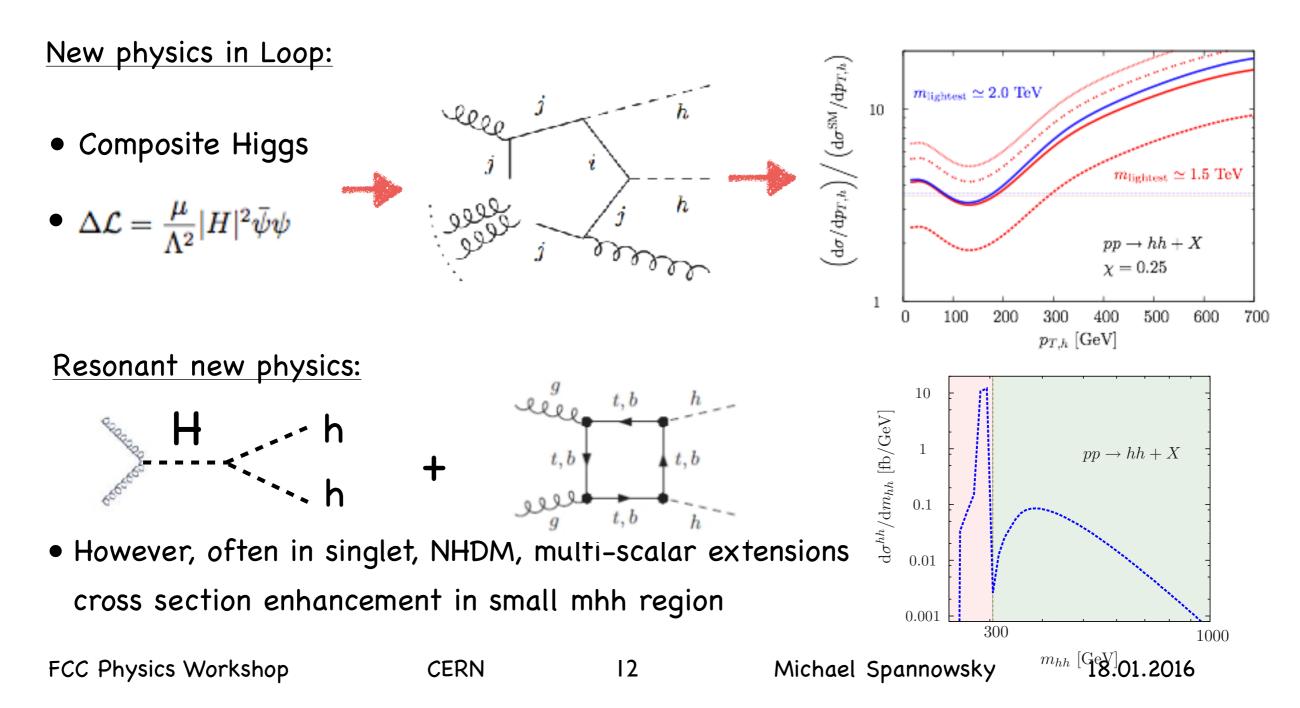
• bbWW/bbtautau/bbmumu -> bb 2l+MET:

[Papaefstathiou '15]

- collinear approximation for tau decays
- mass reconstruction via (best for taus) $M_{
 m reco.} = \left[p_{b_1} + p_{b_2} + (1+f_1)p_{\ell_1} + (1+f_2)p_{\ell_2}\right]^2$

channel	$\sigma(100 \text{ TeV}) \text{ (fb)}$	$N_{3 \text{ ab}^{-1}}$ (cuts, ideal)	N _{3 ab-1} (cuts, LHC)	- f -
${f hh} o (bar b)(W^+W^-) o (bar b)(\ell'^+ u_{ hele'}\ell^-ar u_\ell)$	27.16	$20.9^{+1.8}_{-1.8}$	19.9+1.5	$p_{{ u}_i}=f_ip_{\ell_i}$
$hh ightarrow (bar{b})(au^+ au^-) ightarrow (bar{b})(\ell^{\prime+} u_{\ell^{\prime}}ar{ u}_{ au}\ell^-ar{ u}_{\ell} u_{ au})$	14.63	$38.5^{+4.7}_{-4.7}$	$24.3^{+3.2}_{-3.2}$	
${f t} ar t ightarrow (\ell^+ b u_\ell) (\ell^{\prime-} ar b ar u_{\ell^\prime}), { m cuts \ as \ in \ Eq. \ 1}$	25.08×10^{3}	$34.3^{+23.2}_{-9.4}$	$\substack{15.8^{+15.3}_{-4.8}\\493.7^{+224.9}_{-113.4}}$	
$bar{b}\mathbf{Z} ightarrow bar{b}(\ell^+\ell^-), \ p_{T,b} > 30 { m GeV}$	107.36×10^{3}	$257.9^{+203.7}_{-74.6}$	$493.7^{+224.9}_{-113.4}$	
${f Z}{f Z} o b ar b (\ell^+ \ell^-)$	356.0	$\mathcal{O}(10^{-1})$	$O(10^{-1})$	
${f h}{f Z} o bar b(\ell^+\ell^-)$	99.79	$49.8^{+2.0}_{-2.9}$	$40.4^{+2.3}_{-2.3}$	
${f b}{f b}{f h} ightarrow bar b(\ell^+\ell^-), p_{T,b}>30{ m GeV}$	26.81	O(1)	O(1)	
$b\bar{b}W^{\pm} \rightarrow b\bar{b}(\ell^{\pm}\nu_{\ell}), p_{T,b} > 30 \text{ GeV +mis-tagged }\ell$	1032.6	$O(10^{-2})$	$O(10^{-2})$	
$\ell^+\ell^- + ext{jets} ightarrow (\ell^+\ell^-) + ext{mis-tagged} \ bar{b}$	2.14×10^{3}	$O(10^{-2})$	$O(10^{-2})$	

• bbZgamma:


signal cs similar to bb4l, but backgrounds larger

channel	σ	(100 TeV) (fb) N ₃	$_{ab}$ (cuts, ideal) $N_{3 ab}$ (cut	s, LHC)
${f hh} o (bb)(\ell^+\ell^-\gamma)$		21 14.	$\begin{array}{cccc} 0^{+0.3}_{-0.3} & 7.5^{+0.2}_{-0.2} \\ 8^{+609}_{-77} & 203^{+455}_{-59} \end{array}$	
${f b}ar {f Z}\gamma o bar b(\ell^+\ell^-)\gamma, \ p_{T,b}>30~C$	leV 26	6.00×10^3 266	$\begin{array}{cccc} 0^{+0.3}_{-0.3} & 7.5^{+0.2}_{-0.2} \\ 3^{+609}_{-77} & 203^{+455}_{-59} \\ 75^{+75}_{-23} & 79^{+62}_{-23} \end{array}$	
$t\bar{t}\gamma ightarrow (L^+ b u_L l) (L^- \bar{b} \bar{ u}_L) \gamma$	7.	$\begin{array}{ccc} 94 \times 10^3 & 78 \\ 72 & 3 \\ -72 \end{array}$	79^{+62}_{-23}	
$h\mathbf{Z}\gamma \to (b\bar{b})(\ell^+\ell^-)\gamma$.72 3^+	2^{2}_{-1}	
$b\bar{b}Z \rightarrow b\bar{b}(\ell^+\ell^-) + mis-tagged \gamma$		07.36×10^3 20 ⁴		
$t\bar{t} \to (\ell^+ b\nu_\ell)(\ell'^- \bar{b}\bar{\nu}_{\ell'}) + \text{mis-tagg}$	ed γ , cuts as in Eq. 1 25	5.08×10^3 14 ⁴	$\frac{10^{+2}}{-2}$ 10^{+1}_{-1}	
		prec. cross sec	68% CL on hhh	
esult for	$HH \rightarrow b\overline{b}4\ell$	$\sim 25\%$	$\lambda_3 \in [\sim 0.6, \sim 1.4]$	
channels	$HH \rightarrow b\overline{b}\ell^+\ell^-$	$\sim 15\%$	$\lambda_3 \in [\sim 0.8, \sim 1.2]$	
	$HH \to b\overline{b}\ell^+\ell^-\gamma$	-	-	
FCC Physics Workshop	CERN		Michael Spannowsky	18.01.

2) Does discovery of rare decays benefit from di-Higgs final states?

Yes, if final states benefits from kinematic features of 2->2 production and if other production channels are suppressed

Two ways to enhance HH production cross section:

- Loop enhancement increases boosted rates
- In resonance enhancement allows to exploit large N100/N14 improvement

xSM typical/minimal model to increase the hh cross section (SM extended by real singlet scalar S)

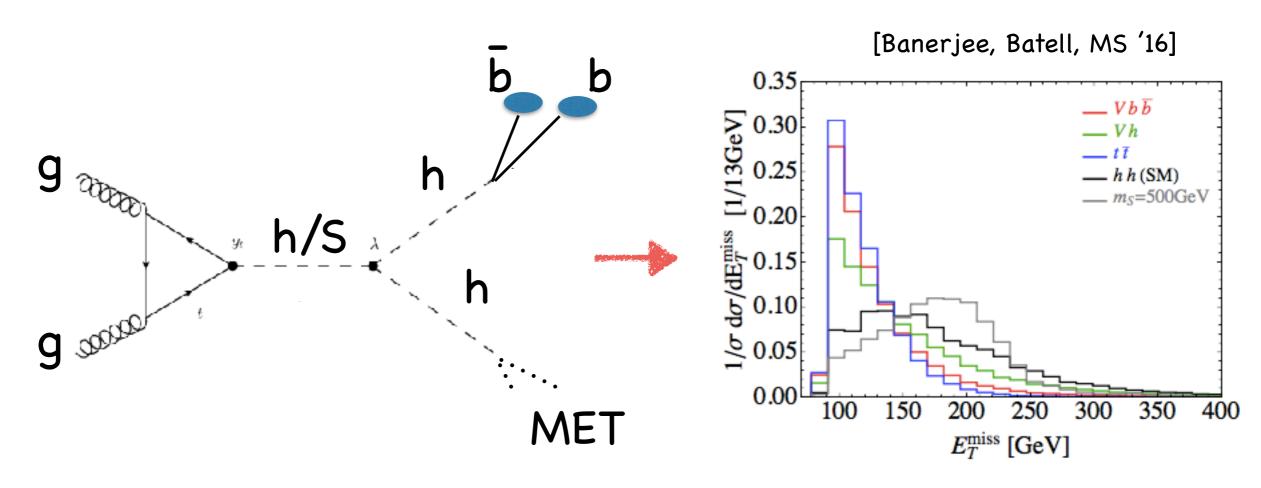
$$V(H,S) = -\mu^2 \left(H^{\dagger}H\right) + \lambda \left(H^{\dagger}H\right)^2 + \frac{a_1}{2} \left(H^{\dagger}H\right)S$$

 $+ \frac{a_2}{2} \left(H^{\dagger}H\right)S^2 + \frac{b_2}{2}S^2 + \frac{b_3}{3}S^3 + \frac{b_4}{4}S^4.$ [Profumo, Ramsey-Musolf, Saughnessy '07]
 [Kotwal, Ramsey-Musolf, No, Winoslow '16]

14 TeV benchmark points to allow for strong first-order PT and search inv. Higgs dec

	$\cos \theta$	m_2	Γ_{h_2}	x_0	λ	a_1	a_2	b_3	b_4	λ_{111}	λ_{211}	σ	BR
		(GeV)	(GeV)	(GeV)		(GeV)		(GeV)		(GeV	(GeV)	(pb)	
B 1	0.961	258	0.68	307	0.52	-266	0.26	-138	0.26	110			0.50
B2	0.976	341	2.42	257	0.92	-377	0.39	-403	0.77	204	-150	0.59	0.74
B3	0.982	353	2.17	265	0.99	-400	0.45	-378	0.69	226	-144	0.44	0.76

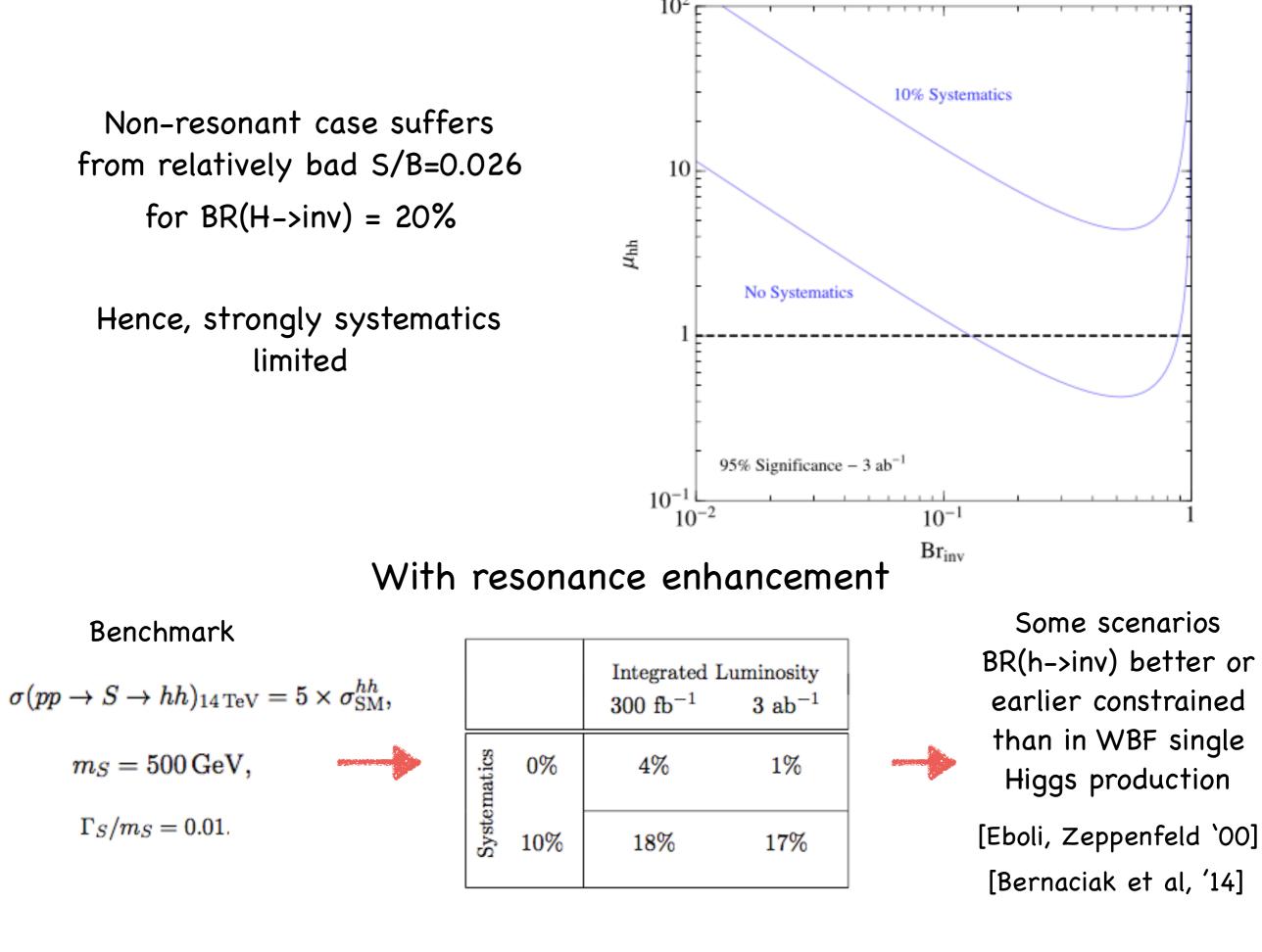
rate enhanced by factor ~ 14 compared to SM for B1


100 TeV benchmark points to allow for strong first-order PT and search inv. Higgs dec

Benchmark	$\cos\theta$	$\sin \theta$	m_2	Γ_{h_2}	x_0	λ	a_1	a_2	b 3	b_4	λ_{111}	λ_{211}	σ	BR
			(GeV)	(GeV)	(GeV)		(GeV)		(GeV)		(GeV	(GeV)	(pb)	
B 1	0.976	0.220	341	2.42	257	0.92	-377	0.392	-403	0.77	204	-150	23.9	0.74
B2	0.982	0.188	353	2.17	265	0.99	-400	0.446	-378	0.69	226	-144	19.0	0.76
B 3	0.983	0.181	415	1.59	54.6	0.17	-642	3.80	-214	0.16	44.9	82.5	20.1	0.33

13

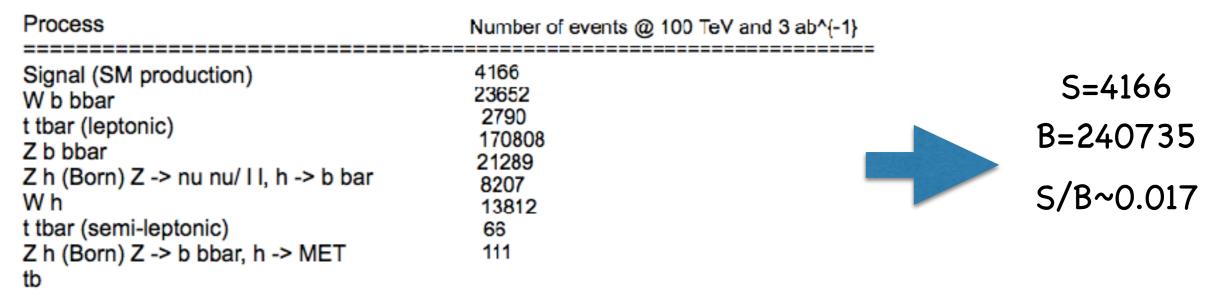
FCC Physics Workshop


Example: Invisible Higgs decays in hh final state

efficiency cut-flow for SM production

- MT2 very helpful observable, as for bbtautau or bbWW [Barr, Dolan, Englert, MS '13]
- Exploiting jet substructure could further improve result

		$Wb\bar{b}~({\rm no}~h)$	$Zb\bar{b} \ ({ m no} \ h)$	Wh	Zh(1)	$Zh\left(2 ight)$	tī
	Signal	$(2b\ell\nu)$	$(2b2\nu/2b2\ell)$	(258ν)	$((2\nu/2\ell)(2b))$	$((2b)(\not\!\!\! E_T))$	(lep+semi-lep)
K-factor	[112]	[133]	[133]	[134]	[134]	[134]	[135]
$\not\!$	1.35×10^{-1}	2.81×10^{-2}	5.63×10^{-2}	1.72×10^{-2}	5.21×10^{-2}	8.60×10^{-2}	$7.92 imes 10^{-3}$
$p_T(b)$	$1.31 imes 10^{-1}$	2.64×10^{-2}	5.12×10^{-2}	1.65×10^{-2}	4.99×10^{-2}	8.10×10^{-2}	7.37×10^{-3}
m_{ih}	$4.84 imes10^{-2}$	7.54×10^{-3}	1.50×10^{-2}	7.16×10^{-3}	2.01×10^{-2}	1.73×10^{-8}	$2.31 imes 10^{-3}$
$\Delta R(b_1, b_2)$	4.88×10^{-2}	5.29×10^{-3}	9.95×10^{-3}	5.97×10^{-3}	1.67×10^{-2}	1.32×10^{-3}	$1.41 imes 10^{-3}$
$\Delta \phi(bb, { ot\!\!/}_T)$	3.82×10^{-2}	$5.14 imes 10^{-3}$	9.56×10^{-3}	$5.78 imes 10^{-3}$	1.58×10^{-2}	1.24×10^{-3}	1.07×10^{-3}
₽ _T	2.35×10^{-2}	$9.79 imes10^{-4}$	2.29×10^{-3}	1.62×10^{-3}	7.18×10^{-3}	6.51×10^{-4}	$9.50 imes 10^{-5}$
$p_T(bb), M_{T2}$	1.44×10^{-2}	$4.87 imes 10^{-4}$	8.82×10^{-4}	1.21×10^{-3}	4.54×10^{-3}	3.95×10^{-4}	5.73×10^{-6}
Scaling	$\mu_{hh}\operatorname{Br}_{\operatorname{inv}}\left(1\text{-}\operatorname{Br}_{\operatorname{inv}}\right)$	1	1	$(1-\mathrm{Br}_{\mathrm{inv}})$	(1-Br _{inv})	$\mathbf{Br}_{\mathrm{inv}}$	1


Limits at 100 TeV

- Cuts not optimised for 100 TeV!
- signal CS enhanced by factor 40-50

thanks to S. Banerjee

- backgrounds mostly 10-20, except ttbar (~40)
- results for $BR(H \rightarrow inv) = 5\%$

Non-resonant case For MET > 160 GeV, pTbb > 180 GeV, MT2 > 160 GeV

resonant case For the resonant case, MET > 160 GeV, pTbb > 180 GeV, MT2 > 180 GeV

Process	Number of	f events @ 10	0 TeV and 3 ab^{-1}	
Signal (Resonant) W b bbar t tbar (leptonic) Z b bbar Z h (Born) Z -> nu nu/ I l, h -> b bar W h t tbar (semi-leptonic) Z h (Born) Z -> b bbar, h -> MET tb	33167 19308 1860 128106 18120 6986 9866 57 111			S=33167 B=184413 S/B~0.18
CC Physics Workshop	CELIN	10	michael spannowsky	18.01.2016

Summary

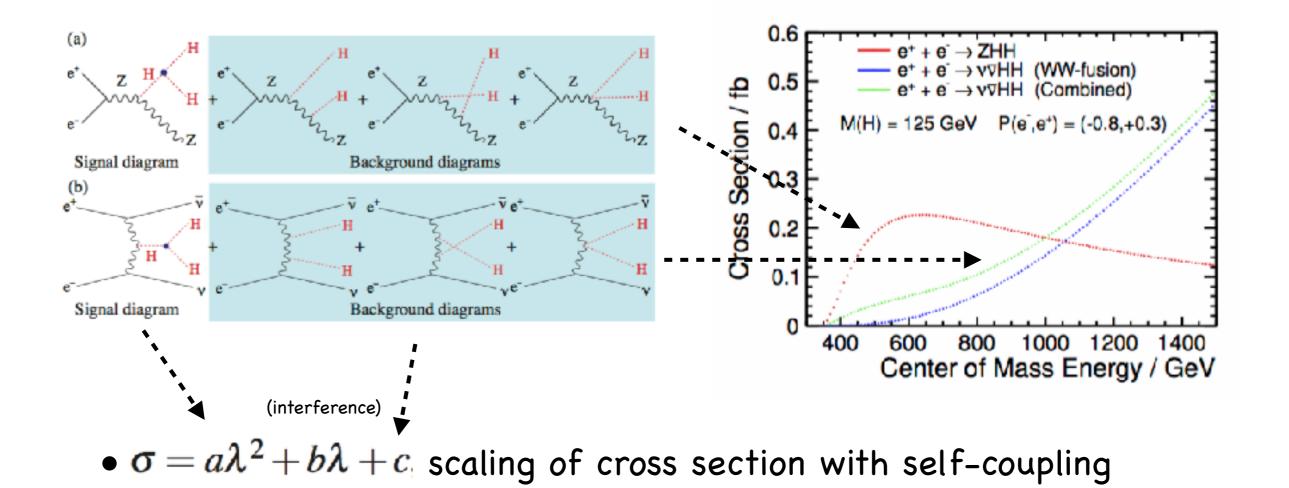
- Both, rare Higgs decays and di-Higgs final states are amongst most important measurements at LHC and beyond
- 100 TeV machine can significantly boost our sensitivity in both directions
- If resonantly enhanced some rare decays can be found earlier in di-Higgs final states than in single-Higgs production
 - Other interesting channels for resonant HH scenario could be

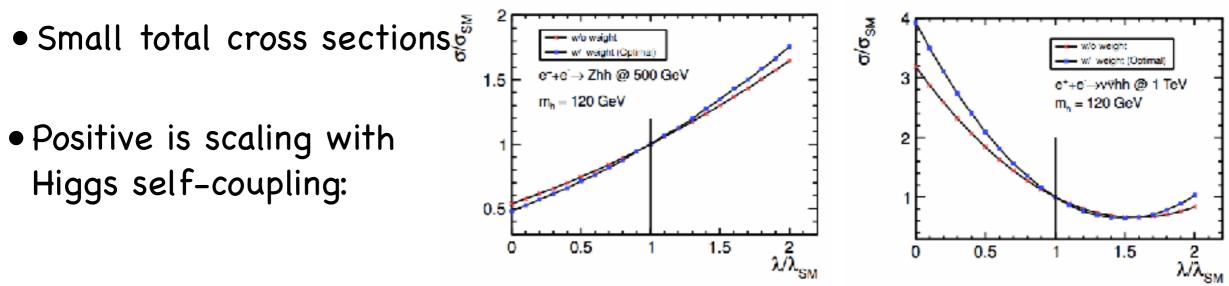
 $hh \rightarrow \gamma \gamma + MET$

$$hh \rightarrow (aa \rightarrow 4b)(WW/\tau\tau) \rightarrow 4b + 2l + MET$$

 $hh \to (aa \to 2b2\tau)(b\overline{b}) \to 4b + 2\tau$

 $hh \rightarrow (2b + MET)(2b) \rightarrow 4b + MET$

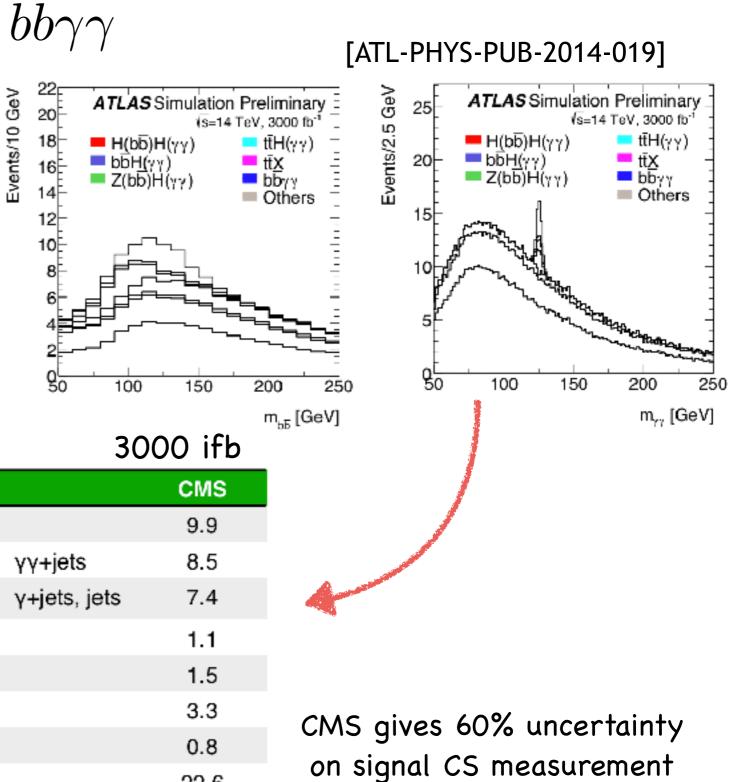

18.01.2016


Not more promising at FCC-ee or ILC

[Tian, Fujii 1311.6528]

- ILC very good for many couplings, but self-coupling difficult to probe
- WBF most sensitive channel for large energies > 500 GeV
- Decay via H->bb
- Unless 1 TeV ILC precision low

∆g/g		Baseline		LumiUP			
	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV	
8HZZ	1.3%	1.0%	1.0%	0.61%	0.51%	0.51%	
SHWW	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%	
811bb	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%	
8Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1.0%	
8 1188	6.4%	2.3%	1.6%	3.0%	1.2%	0.87%	
$g_{H\tau\tau}$	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%	
81177	18%	8.4%	4.0%	8.2%	4.5%	2.4%	
$8H\mu\mu$	-	-	16%	-	-	10%	
811tt	-	14%	3.1%	-	7.8%	1.9%	
Γ_H	11%	5.0%	4.6%	5.4%	2.5%	2.3%	
Amm	-	83%	21%	-	46%	13%	



20

 Analyses in HH->4b and HH->bbWW give precision of 80% (500 GeV) and 20% (1 TeV)

MIAPP 2016

- Estimates from experiments far worse than theory estimates
- Background estimates between both experiments quite different

	50	
ATLAS		CMS
8.4±0.1		9.9
9.7 ± 1.5	γγ+jets	8.5
24.1 ± 2.2	γ+jets, jets	7.4
3.4 ± 2.2		1.1
6.1 ± 0.5		1.5
2.7 ± 0.1		3.3
1.2 ± 0.1		0.8
47.1 ± 3.5		22.6
1.2		
1.3		
	8.4 ± 0.1 9.7 ± 1.5 24.1 ± 2.2 3.4 ± 2.2 6.1 ± 0.5 2.7 ± 0.1 1.2 ± 0.1 47.1 ± 3.5 1.2	ATLAS 8.4 ± 0.1 9.7 ± 1.5 $\gamma\gamma+jets$ 24.1 ± 2.2 $\gamma+jets, jets$ 3.4 ± 2.2 6.1 ± 0.5 2.7 ± 0.1 1.2 ± 0.1 47.1 ± 3.5 1.2

MIAPP 2016

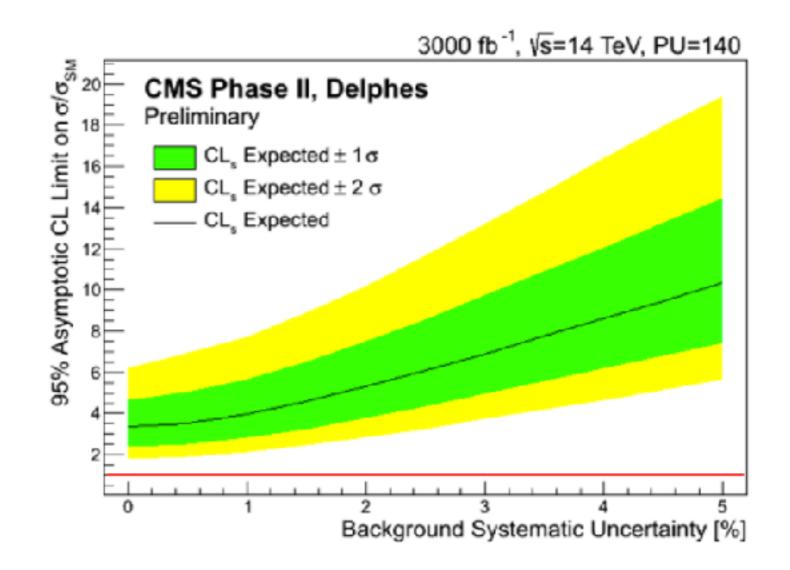
Search for $HH \rightarrow bb^-WW \rightarrow bb^-lvlv$

Event preselection:

- 2 b-jets Medium WP, pT > 30 GeV
 2 leptons, muons: pT > 20 GeV, electrons: pT > 25 GeV
- MET >20GeV Clean up cuts (mjj, mll, ΔRjj, ΔRll, Δφjj,ll)

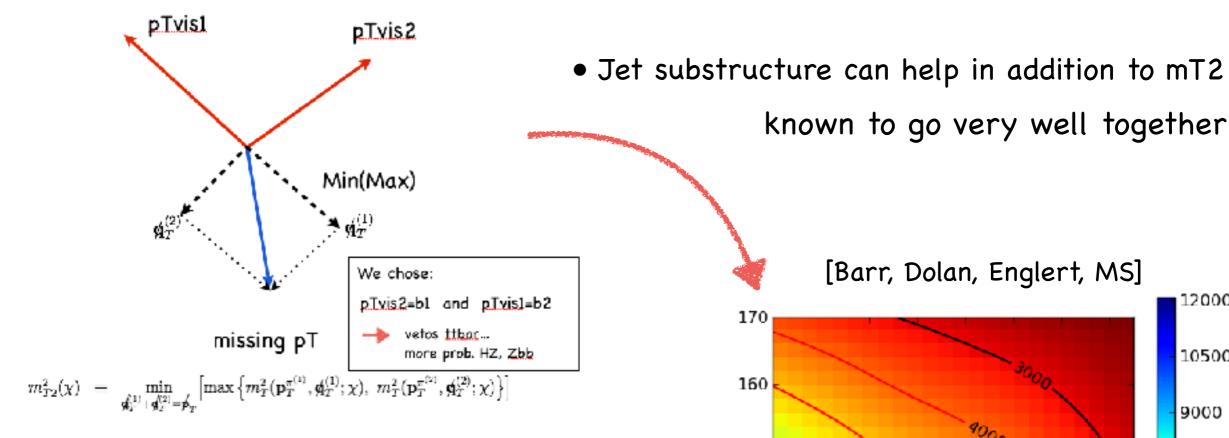
Analysis Optimization:

- Neural network discriminant from kinematic variables
- Variables: Mll, Mjj, ΔRll, ΔRjj, ΔRjl, MET, Δφll,jj, pjj, and MT


Analysis Setup:

- Phase II scenario Assuming 3000/fb
- Based on Delphes reconstruction
- Considering only the main background: t⁻t
- The rest of the SM processes are negligible

CMS feasibility study for ECFA


Very large uncertainties in fit

Huge systematic uncertainties

 $b\bar{b}\tau^+\tau^-$

- Here, major background ttbar -> MT2 can change that
- Handles to suppress backaround: leptons, b-jets and MET

 $\operatorname{cut} p_{\mathrm{T},bb}$

23

150

140

130

120 - 30

- MT2 distribution discriminates between HH and ttbar
- Without jet substructure we find S/B $\sim 1/5$

MIAPP 2016

Exclusion at 95% CL: $\lambda > \lambda_{95\% \text{ CL}}^{3000/\text{fb}} \simeq 3.0 \times \lambda_{\text{SM}}$

Munich

12000

10500

9000

7500

6000

4500

3000

luminosity for S/V