
Rare decays in HH at 

FCC-hh with 100 TeV

Michael Spannowsky
IPPP, Durham University

1 FCC Physics Workshop               CERN               Michael Spannowsky          18.01.2016                   



2 FCC Physics Workshop               CERN               Michael Spannowsky          18.01.2016                   

Motivation to look for di-Higgs final states

•  Measure Higgs selfcoupling of the Standard Model

•  Observe di-Higgs final states, possibly enhanced in BSM

see also talks by M. Ramsey-Musolf and B. Di Micco

�

‣ stability of the Higgs potential

‣ Order of Phase Transition

‣ Resonant and loop-enhanced di-Higgs production predicted  
in many BSM models
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Current status for expected sensitivity at 
HL-LHC and 100 TeV

Predicted sensitivity for cross section and selfcoupling at 100 TeV

• ATLAS and CMS performed studies for HL-LHC 
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: and

(still conservative methods)

bbWW rather insensitive… 

still, future FCC/ILC might not do better
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Motivation to look for rare decays

• Events produced in                         before acceptance, trigger and 
reconstruction efficiencies [Curtin et al ’12]

or

Event rate large, yet decays rather weakly limited. Leave no stone unturned!

• Many models predict:
‣ extended scalar sectors (cp-even/odd)
‣ Lepton and quark FCNCs
‣ vector-like fermions

e.g. H->2 phi -> 4l or H-> MET+X
e.g. H-> tau mu  or H-> b s
e.g. enhanced H-> Z gamma

• Higgs portal one of few portals that allow dark sector being 
uncharged under SM, e.g.

BR~10

possible sensitivity at 
level of 

-6
with 300 ifb



5 FCC Physics Workshop               CERN               Michael Spannowsky          18.01.2016                   

[Curtin et al ’12]
Large number of possibilities for rare Higgs decays
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[Curtin et al ’12]
Large number of possibilities for rare Higgs decays

Good 
sensitivity 


in single H and 
associated 
production
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[Curtin et al ’12]
Large number of possibilities for rare Higgs decays

difficult in 
single H 

production 

hadronic and 
MET decays
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Rare decays from SM di-Higgs production

• Rare decays often statistics limited

• Production CS for HH at 100 TeV machine increased 40 times over LHC

[De Florian, Mazzitelli ‘13]

• However, within SM other production mechanisms for single 
Higgs production larger, e.g. H, HW, HZ, ttH

kinematic benefit of 2->2 scattering present in other channels
rare decays likely to show up in other channels first

• Of course, if rare decays enhanced and clean, can help to measure hhh

one of largest enhancements 
compared to other channels
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Two directions to look into:

2) Does discovery of rare decays benefit from di-Higgs final states?

1) Can scalar interactions be discovered or measured using rare decays?

1) At 100 TeV new decay modes become accessible, e.g.

[Papaefstathiou ’15]

at 100 TeV all 
rates 

appreciably 
large

• bbZZ -> bb 4l:

• One Higgs decays into major mode other very clean

Can extrapolate result to other decay modes

• Can be simulated rather reliably
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Results for 

In general, relatively good S/B

statistics though very challenging

[Papaefstathiou ’15]
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• bbWW/bbtautau/bbmumu -> bb 2l+MET:

• bbZgamma:

[Papaefstathiou ’15]

‣ signal cs similar to bb4l, but backgrounds larger

‣ collinear approximation for tau decays
‣ mass reconstruction via (best for taus)

prec. cross sec 68% CL on hhh

result for 
all channels
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2) Does discovery of rare decays benefit from di-Higgs final states?

Yes, if final states benefits from kinematic features of 2->2 
production and if other production channels are suppressed

Two ways to enhance HH production cross section:

New physics in Loop:

• Composite Higgs

Resonant new physics:

• However, often in singlet, NHDM, multi-scalar extensions
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FIG. 4: Invariant mass distribution of the (a) hh and the (b)
Hh system for MSSM-like production at low tanβ. For details
see text.

(28%) and ZZ (12%). We could increase the branching
ratio into two Higgses further by decreasing tanβ, at the
cost of increasing the scalar masses. Using a suitably
modified version of Vbfnlo we find the leading order
production cross-section σ(pp → H → hh) = 246 fb. We
also calculate the cross-section for σ(pp → H → Hh).
This is suppressed by the off-shell H in the s-channel,
and by the fact that the λHHh coupling is suppressed
relative to the λHhh coupling. We find the cross-section
for this process to be 4.5 fb, too low for observation given
h has SM-Higgs-like branching ratios.
We can separate the large contribution H → hh by

reconstructing the di-Higgs invariant mass which exhibits
a peak at mH . This allows us to extract the cross-section
for pp → H → hh, and after cutting around the peak the
remainder of the events are due to pp → h → hh. As
in the Higgs portal model, this process can be extracted
using the techniques from our previous paper, allowing
constraints to be put on α and β. The invariant mass
distribution and rate for the hh + j final state are also
similar to the portal scenario, Fig. 3

Summary: The di-Higgs phenomenology in the MSSM
at low tanβ is similar in many respects to that of the

Higgs portal model. Measurements of the resonant and
non-resonant contributions to di-Higgs production allows
a reconstruction of the parameters α and β.

III. NONRESONANT NEW PHYSICS:
PSEUDO-NAMBU-GOLDSTONEISM

Apart from softly-broken supersymmetry, strong in-
teractions are the only other constructions which can
cure the naturalness problem (if only partially) with phe-
nomenologically testable implications.
A well-known example of electroweak symmetry break-

ing from strong interactions is technicolor (TC) where
mW ∼ f where f is the “pion” decay constant. The
techni-Σ and techni-ρ resonances will have masses of the
order of the TC confining scale, which can be much larger
than the electroweak scale, ΛTC ≫ f . This usually trig-
gers a tension with curing the quadratic energy diver-
gence in perturbative longitudinal gauge boson scatter-
ing, which demands at least a single light degree of free-
dom. An illustrative example which incorporates such
a state is easily constructed from the holographic inter-
pretation of a bulk gauge theory broken by boundary
conditions in a Randall-Sundrum background [38]‡: The
appearance of the infrared brane signals the spontaneous
breakdown of conformal invariance in the dual picture
[40]. This is accompanied by higgsing of a symmetry,
which is weakly gauged into the strongly-interacting sec-
tor. On the one hand, such a “higgsless” theory does not
have light scalar degrees of freedom analogous to the SM
Higgs boson. On the other hand, stabilizing the compact-
ification moduli via the Goldberger-Wise mechanism [41]
lifts the zero mass radion, which couples to the conformal
anomaly

T µ
µ ∼ m2

WW+
µ W−µ +

m2
w

cos2 θw
ZµZ

µ

+
∑

f

mf f̄ f + . . . . (3.1)

In the CFT picture we identify a pseudo-dilaton, which
has an impressive resemblance to the SM Higgs boson as
a consequence of its couplings. In this sense, the dilaton
mimics a light Higgs boson because the mass terms are
the source of scaling violation.
Different to this approach is the interpretation of the

entire Higgs multiplet as a set of Nambu-Goldstone
bosons. There are multiple ways to construct such a
model consistently, ranging from collective symmetry
breaking [42] to holographic Higgs models [43, 44] which
vary in their details and symmetry content. Common to

‡Owing to the large N and large ’t Hooft coupling limit [39] of
AdS/CFT, it is intrinsically difficult to construct a fully realistic
model in terms of electroweak precision measurements.

cross section enhancement in small mhh region 

H h
h

•  

+
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• In resonance enhancement allows to exploit large N100/N14 improvement

• Loop enhancement increases boosted rates

xSM typical/minimal model to increase the hh cross section 

(SM extended by real singlet scalar S)

14 TeV benchmark points to allow for strong first-order PT and search inv. Higgs dec

rate enhanced by factor ~ 14 compared to SM for B1

100 TeV benchmark points to allow for strong first-order PT and search inv. Higgs dec

[Kotwal, Ramsey-Musolf, No, Winoslow ’16] 
[Profumo, Ramsey-Musolf, Saughnessy ’07]
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Example: Invisible Higgs decays in hh final state

h

h
h/S

g

g

b b-

MET

[Banerjee, Batell, MS ’16]

• MT2 very helpful observable, as 
for bbtautau or bbWW

• Exploiting jet substructure could 
further improve result

efficiency cut-flow for SM production

[Barr, Dolan, Englert, MS ’13]
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Benchmark Some scenarios  
BR(h->inv) better or 
earlier constrained 
than in WBF single 
Higgs production

[Eboli, Zeppenfeld ‘00]
[Bernaciak et al, ’14]

With resonance enhancement

Non-resonant case suffers 
from relatively bad S/B=0.026

Hence, strongly systematics 
limited

for BR(H->inv) = 20%
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Limits at 100 TeV

thanks to S. Banerjee• signal CS enhanced by factor 40-50
• backgrounds mostly 10-20, except ttbar (~40)
• results for BR(H->inv) = 5%

S/B~0.017

S=4166
B=240735

Non-resonant case

resonant case

• Cuts not optimised for 100 TeV!

S/B~0.18

S=33167
B=184413
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Summary

• Other interesting channels for resonant HH scenario could be
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• Both, rare Higgs decays and di-Higgs final states are amongst 
most important measurements at LHC and beyond

• 100 TeV machine can significantly boost our sensitivity in both 
directions

• If resonantly enhanced some rare decays can be found 
earlier in di-Higgs final states than in single-Higgs production
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Not more promising at FCC-ee or ILC

[Tian, Fujii 1311.6528]

• WBF most sensitive channel 
for large energies > 500 GeV

• Unless 1 TeV ILC 
precision low

• Decay via H->bb

• ILC very good for many 
couplings, but self-coupling 
difficult to probe
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• Small total cross sections

•                       scaling of cross section with self-coupling
(interference)

• Positive is scaling with 
Higgs self-coupling:

• Analyses in HH->4b and HH->bbWW give 
precision of 80% (500 GeV) and 20% (1 TeV)
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3000 ifb

[ATL-PHYS-PUB-2014-019]

CMS gives 60% uncertainty 
on signal CS measurement

• Estimates from experiments far 
worse than theory estimates

• Background estimates between 
both experiments quite different
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CMS feasibility study for ECFA 

Very large uncertainties in fit
Huge systematic uncertainties
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• Handles to suppress background: leptons, b-jets and MET

• Without jet substructure we find S/B ~ 1/5

Exclusion at 95% CL:

�WWH = ±0.33 (479)

b¯b⌧+⌧� (480)

b¯b�� (481)

� > �3000/fb
95% CL ' 3.0⇥ �SM (482)

34

• MT2 distribution discriminates between HH 
and ttbar 

• Jet substructure can help in addition to mT2

known to go very well together

[Barr, Dolan, Englert, MS]

• Here, major background ttbar -> MT2 can change that
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