

LLCP at FCC-hh (Vs = 100 TeV)

Sho IWAMOTO (岩本 祥)

18 Jan. 2018 1st FCC Physics Workshop @ CERN

Based on ATLAS Jonathan. L. Feng, S.I., Yael Shadmi, Shlomit Tarem [1505.02996] UC Irvine Technion (collected in FCC report [1606.00947])

LLCP at FCC-hh (√s = 100 TeV)

Long-lived charged particle

"stable"

> in-flight decay

→ talk by José Francisco Zurita (Friday)

experimental

phenomenology

theoretical

experimental ...Why not?

phenomenology

theoretical

experimental ... Why not?

phenomenology

long lifetime

ightarrow an actor in early Universe

FCC-hh will cover most of the standard thermal-WIMP scenario

non-standard DM scenarios with LLCP

- > super-WIMP:
 - \rightarrow next slides

- co-annihilation:
 - $(\widetilde{B} \widetilde{\tau}) \lesssim 700 \,\mathrm{GeV}$ $(\widetilde{W} - \widetilde{g}) \lesssim 6 - 7 \,\mathrm{TeV}$ $(\widetilde{B} - \widetilde{c}) = (\widetilde{B} - \widetilde{c}) = 1 - \overline{c}$
 - $(\widetilde{B} \widetilde{g})$ or $(\widetilde{B} \widetilde{t}) \lesssim 8 \text{ TeV}$
 - Cf. Harigaya, Kaneta, Matsumoto [1403.0715], Ellis, Olive, Zheng [1404.5571], etc.

theoretical

experimental ... Why not?

phenomenology

long lifetime

 \rightarrow an actor in early Universe

FCC-hh will cover most of the standard thermal-WIMP scenario

non-standard DM scenarios with LLCP

- > super-WIMP:
 - \rightarrow next slides

- co-annihilation:
 - $(\widetilde{B} \widetilde{\tau}) \lesssim 700 \,\text{GeV}$ $(\widetilde{W} - \widetilde{g}) \lesssim 6-7 \,\text{TeV}$ $(\widetilde{B} - \widetilde{q}) \,\text{or} \,(\widetilde{B} - \widetilde{t}) \lesssim 8 \,\text{TeV}$

Cf. Harigaya, Kaneta, Matsumoto [1403.0715], Ellis, Olive, Zheng [1404.5571], etc.

theoretical ... SUSY?

- > GMSB scenario: light gravitino \rightarrow long-lived sleptons (\tilde{l})
- \succ split-SUSY: extremely heavy squarks ightarrow long-lived gluino (\widetilde{g})

$$\tau(\tilde{l} \to l\tilde{G}) = 5.7 \times 10^{-7} \operatorname{sec} \cdot \left(\frac{m_{\tilde{l}}}{1 \operatorname{ TeV}}\right)^{-5} \left(\frac{m_{\tilde{G}}}{1 \operatorname{ MeV}}\right)^2$$

experimental ... Why not?

phenomenology

long lifetime

 \rightarrow an actor in early Universe

FCC-hh will cover most of the standard thermal-WIMP scenario

non-standard DM scenarios with LLCP

- > super-WIMP:
 - \tilde{l} > O(1) TeV

- co-annihilation:
 - $(\widetilde{B} \widetilde{\tau}) \lesssim 700 \,\text{GeV}$ $(\widetilde{W} - \widetilde{g}) \lesssim 6-7 \,\text{TeV}$
 - $(\widetilde{B} \widetilde{g})$ or $(\widetilde{B} \widetilde{t}) \lesssim 8 \text{ TeV}$

Cf. Harigaya, Kaneta, Matsumoto [1403.0715], Ellis, Olive, Zheng [1404.5571], etc.

theoretical ... SUSY?

- \succ GMSB scenario: light gravitino \rightarrow long-lived sleptons
- > split-SUSY: extremely heavy squarks \rightarrow long-lived gluino

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss
- Muon momentum resolution

4. Summary

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss
- Muon momentum resolution

4. Summary

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $\boldsymbol{p} \& \boldsymbol{\beta}$ measurements ($\beta = v/c$)

velocity

- TOF [time-of-flight] $\beta = \Delta L/\Delta t$
- dE/dx [ionization energy loss]

$$m = \frac{p}{\beta\gamma} = \frac{p}{\beta/\sqrt{1-\beta^2}}$$

momentum & velocity

mass measurement = $p \& \beta$ measurements $(\beta = v/c)$

velocity

- TOF [time-of-flight] $\beta = \Delta L / \Delta t$
 - dE/dx [ionization energy loss]

HL-LHC

CMS-PAS-EXO-14-007 (sept. 2016)

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss
- Muon momentum resolution

4. Summary

our selection flow

 \tilde{l} = reconstructed "muon" with

- $P_{\rm T} > 500 \,{\rm GeV}$
- |η| < 2.4
- $0.4 < \hat{\beta} < 0.95$ (from ToF)
- *E*_{loss} < 30 GeV

- $P_{\rm T} > 70 \, {\rm GeV}$
- |η| < 2.4
- $0.2 < \hat{\beta} < 0.95$

/37

1. Motivations: Why LLCP?

2. Searches at (HL-)LHC

3. Searches at FCC-hh

- Muon radiative energy loss for BKG rejection
- Muon momentum resolution

4. Summary

26 /37

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

"calorimeter": approximated by iron (Fe) with 3m thickness.

→ some of μ (P_T > 500 GeV): > 30 GeV energy deposit.

Assumptions

Detector

similar to ATLAS/CMS

- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 100TeV
- Pile-up not considered

- \tilde{l} -selection flow
 - \tilde{l} = reconstructed "muon" with
 - $P_{\rm T} > 500 \,{\rm GeV}$
 - |η| < 2.4
 - $0.4 < \hat{\beta} < 0.95$ (from ToF)
 - $E_{\text{loss}} < 30 \,\text{GeV}$
- Event selection
 two *l*-candidates

Result: cut flow

Event categorization
$$(\int L = 1 \text{ ab}^{-1})$$
1 TeV3 TeVBKG $N_{LLCP} = 0$ 4831.34(a lot) $N_{LLCP} = 1$ 3784.462.78 × 10⁵ $N_{LLCP} = 2$ 42410.134.6SR

- Event selection
 - two *l*-candidates

31

/37

cf. ATLAS 7 TeV commissioning: (ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

cf. ATLAS 7 TeV commissioning: (ID-barrel, MS-barrel, MS-extbarrel) = (38%, 14%, 6%) @ 1 TeV

1. Motivations: Why LLCP?

- **2. Searches at (HL-)LHC**
- **3. Searches at FCC-hh**
 - Muon radiative energy loss for BKG rejection
 - > Our simulation

4. Summary: FCC-hh prospects

"Muon radiative energy loss"

36 /37

Three topics

100 TeV FCC-hh muon momentum resolution

(FCC-hh trk. goal:
$$\frac{\Delta p_{T}}{p_{T}}$$
 = (const) $\oplus \frac{0.01 - 0.02}{\text{TeV}}$)

Exclusion & Discovery Reach

Momentum resolution

HL-LHC: our simulation

Detector

- similar to ATLAS/CMS
- > β -resolution same as ATLAS (resolution: 2.4%)
- Signal: Madgraph5 + Pythia6 + Delphes3 (calculated at the LO)
- BKG: "Snowmass 2013" BKG set for 14 TeV (publicly available)
- Pile-up not considered

• \tilde{l} -selection flow

reconstructed "muon" w.

- *p*_T > **100** GeV
- |η| < 2.4
- $0.3 < \hat{\beta} < 0.95$

Event selection
 two *l*-candidates

14 TeV LHC expectation

45/37

47 /37

Why $\beta > 0.4$? (slepton d*E*/dx)

49/37

Figure from Groom, Mokhov, Striganov, Atom. Nucl. Data Tab. **78** (2001) 183-356 [also in PDG Review "Passage of particles through matter"]

Mean value of *E*loss?

Averaged muon energy loss in 3m iron (internal)

dE/dx to measure β

Mass measurement = Measurement of velocity β

• TOF : time-of-flight $\beta = \Delta L / \Delta t$

Extra materials

Figure 6: The lifetime of charged wino evaluated by using δm at the one-loop (green band) and two-loop (red band). We neglected the next-to-leading order corrections to the lifetime of the charged wino estimated in terms of the pion decay rate, which is expected to be a few percent correction. The black chain line is the upper limit on the lifetime for a given chargino mass by the ATLAS collaboration at 95 % CL ($\sqrt{s} = 7$ TeV, $\mathcal{L} = 4.7$ fb⁻¹) [28]. The blue line shows the constraints which are given by the LEP2 constraints [30]–[33].

Figure 3: Decay length of the gluino $c\tau_{\tilde{g}}^{100_{\text{TeV}}}$ with the squark mass $\tilde{m} = 100$ TeV in colored (almost horizontal) lines. Mass difference ΔM with which the thermal relic of the bino DM agrees to $\Omega_{\text{DM}}h^2 = 0.12$ is also shown in the black solid line for the case in which the bino-gluino chemical equilibrium is assumed, while the cases for $\tilde{m} = 100$, 300 and 500 TeV are given in the other black lines.