

Kechen Wang

DESY, Hamburg, Germany CFHEP, IHEP, CAS, Beijing, China

1st FCC Physics Workshop, Jan 18, 2016

Based on [Phys. Rev. D **94** (2016) 013005, hep-ph/1701.XXXXXX ] with C.S. Kim, C. Dib and J. Zhang

### **Outline**

- **★** Introduction of Sterile Neutrinos
  - Simplified Model
- ★ Discovering/Excluding N
  - Dirac
  - Majorana
- ★ Distinguishing Dirac/Majorana N
- **★** Summary
- → Results @ HL-LHC today
- → Can be extended to 100 TeV, like FCC-hh

# **Theory Model**

Discovery of neutrino oscillations => neutrinos have mass

- → In SM, neutrinos are massless
- → A window to BSM physics

Type-I see-saw: Singlet (Sterile) Fermions Interactions: [0901.3589]



#### Simplified model with assumptions:

Only 1 generation of sterile neutrinos is light & within experimental reach;

$$U_{NT} = 0;$$

3 free parameters:  $m_N$ ,  $U_{Ne}$ ,  $U_{N\mu}$ , Dirac/Majorana.

# Studies @ LHC

#### Main Search Channels:



2*l* + 2j

need well isolated energetic 2 jets; need SS di-lepton to suppress BG;

 $\rightarrow$  better for Majorana N with  $m_N > m_W$ .

Majorana:

[CMS: 1207.6079, 1501.05566] [ATLAS-CONF-2012-139]

$$pp \to W^{\pm} \to l^{\pm}N \to l^{\pm}l^{\pm}jj \ (l = e, \mu)$$

Dirac:

$$pp \to W^{\pm} \to l_{\scriptscriptstyle 1}^{\pm} N \to l_{\scriptscriptstyle 1}^{\pm} l_{\scriptscriptstyle 2}^{\mp} jj \quad (l_{\scriptscriptstyle 1,2} = e, \mu)$$



3I + MET

→ better for Majorana or Dirac N with m<sub>N</sub> < m<sub>V</sub>

LNV:  $W^+ \rightarrow e^+ e^+ \mu^- \overline{v}_\mu$ 

m<sub>N</sub> < m<sub>W</sub>: [1504.02470] m<sub>N</sub> > m<sub>W</sub>: [0809.2096, 0910.2720, 1112.6419 ...

Today!

non-trival ←

flavor of v undetectable

distinguishable?

LNC:  $W^+ \rightarrow e^+ e^+ \mu^- v_e$ 

[0809.2096, 1509.05981]

### **Global Constraints**



### Outline

- **★** Introduction of Sterile Neutrinos
  - Simplified Model
- ★ Discovering/Excluding N
  - Dirac
  - Majorana
- ★ Distinguishing Dirac/Majorana N
- **★** Summary

### **Production Rates**

#### tri-lepton + MET with no-OSSF lepton pairs



Br 
$$(W^+ \to e^+ e^+ \mu^- \nu_e) \propto \frac{\left| U_{Ne} U_{N\mu} \right|^2}{\left| U_{Ne} \right|^2 + \left| U_{N\mu} \right|^2}$$



$$\mathsf{Br}\left(\mathsf{W}^{+}\to\mathsf{e}^{+}\,\mathsf{e}^{+}\,\mu^{-}\,\overline{\nu}_{\mu}\right)\propto\,\frac{\left|\mathsf{U}_{\mathsf{Ne}}\right|^{4}}{\left|\mathsf{U}_{\mathsf{Ne}}\right|^{2}+\left|\mathsf{U}_{\mathsf{N}\mu}\right|^{2}}$$

#### Scale factors for different tri-lepton states

|            | Dirac<br>(LNC) | Majorana<br>(LNC+LNV)         |
|------------|----------------|-------------------------------|
| e⁺ e⁺ µ⁻ v | S              | s (1 + r)                     |
| μ⁺ μ⁺ e⁻ v | S              | $s\left(1+\frac{1}{r}\right)$ |

normalization factor 
$$s\equiv 2\times 10^6\times \frac{|U_{Ne}U_{N\mu}|^2}{|U_{Ne}|^2+|U_{N\mu}|^2}$$
 disparity factor 
$$r\equiv \frac{|U_{Ne}|^2}{|U_{N\mu}|^2}$$

For benchmark point  $|U_{Ne}|^2 = |U_{N\mu}|^2 = 10^{-6} \rightarrow r = s = 1$ 

#### Collider Simulation

#### **Simulation**

MadGraph (jet matching up to 2 extra partons) + PYTHIA + Delphes

#### Signal:

tri-lepton + MET with no OSSF lepton pairs  $e^+ e^+ \mu^- / \mu^+ \mu^+ e^- / e^- e^- \mu^+ / \mu^- \mu^- e^+ + MET$ .

#### **SM** backgrounds:

→ Leptonic τ decay:
 WZ -> (/ ν) (τ τ) -> 3 / + MET

→ Fake leptons from jets containing heavy-flavor mesons:

 $\gamma^*/Z$ +jets:  $\gamma^*/Z$  (->  $\tau \tau$ ) + a 3<sup>rd</sup> faked lepton

t tBar+jets: prompt decay of t tBar + a 3<sup>rd</sup> fake lepton

# Strategy

#### Apply various cuts to reduce BG

- $\rightarrow$  3 leptons  $l^{\pm}l^{\dagger}l^{\prime \mp}$ , veto b-jets.
- → Cut-and-Count or MVA



### correct lep from N & p<sub>z,v</sub>

← by minimizing the

$$M(l^{\dagger}l^{\dagger}l^{\prime\dagger}v)$$

$$\chi^{2} = \left(\frac{M_{W} - m_{W}}{\sigma_{W}}\right)^{2} + \left(\frac{M_{N} - m_{N}}{\sigma_{N}}\right)^{2}$$

#### MVA input observables:

- $\rightarrow$  met, H<sub>T</sub>;
- $\rightarrow$  M<sub>T</sub>(met, lep(s));
- $\rightarrow \Delta \phi$ (met, lep(s));
- $\rightarrow$  M(leps);
- $\rightarrow \Delta \phi$ (lep, lep).





### **Cut Flow Tables**

#### BDT from TMVA package





# of events, 14 TeV, 3000 fb<sup>-1</sup>  $m_N = 20 \text{ GeV}$ 

| Cuts                               | Dirac | Majorana | $\gamma^*/Z$ | WZ     | t ar t  | SS        |
|------------------------------------|-------|----------|--------------|--------|---------|-----------|
| Basic cuts                         | 54.0  | 133.2    | 4220         | 2658   | 68588   |           |
| N(b-jets)=0                        | 53.1  | 131.1    | 4063.0       | 2497.1 | 31953.5 |           |
| CC                                 | 44.2  | 110.9    | 209.8        | 25.3   | 16.9    | 2.6 (5.8) |
| BDT > 0.1825                       | 46.7  | -        | 1.9          | 1.3    | 0.0     | 6.6       |
| $\overline{\mathrm{BDT} > 0.1705}$ | -     | 120.7    | 5.1          | 1.7    | 0.8     | 10.7      |

## Limits



### Outline

- **★** Introduction of Sterile Neutrinos
  - Simplified Model
- ★ Discovering/Excluding N
  - Dirac
  - Majorana
- ★ Distinguishing Dirac/Majorana N
- **★** Summary

### Basic Idea

(1) 1st BDT -> reduce SM BG

# of events, 14 TeV, 3000 fb<sup>-1</sup>  $m_N = 20 \text{ GeV}$ 

|               | $e^+e^-$ | $^+\mu^-$ | $\mu^+\mu$ | $e^+e^-$ | $e^-e$ | $-\mu^+$ | $\mu^-\mu$ | $u^-e^+$ | $l^{\pm}l^{\pm}l'^{\mp}$ | $l^{+}l^{+}l'^{-}$ | $l^-l^-l'^+$ | $l^{\pm}l^{\pm}l'^{\mp}$ |
|---------------|----------|-----------|------------|----------|--------|----------|------------|----------|--------------------------|--------------------|--------------|--------------------------|
| Cuts          | LNC      | LNV       | LNC        | LNV      | LNC    | LNV      | LNC        | LNV      | $\gamma^*/Z$             | $W^+Z$             | $W^-Z$       | $tar{t}$                 |
| Basic cuts    | 13.6     | 19.5      | 15.0       | 22.0     | 12.1   | 18.2     | 13.3       | 19.5     | 1055.0                   | 779.0              | 550.0        | $\overline{17147.0}$     |
| N(b-jets)=0   | 13.4     | 19.2      | 14.7       | 21.7     | 11.9   | 17.9     | 13.1       | 19.2     | 1015.8                   | 731.8              | 516.7        | 7988.4                   |
| BDT1 > 0.1709 | 12.2     | 17.7      | 13.5       | 20.0     | 10.9   | 16.5     | 12.0       | 17.7     | 1.2                      | 0.5                | 0.4          | 0.2                      |

(2) 2<sup>nd</sup> BDT: kinematical distributions differing between LNC & LNV,  $M_T(met, lep(s))$  &  $\Delta \phi(met, lep(s))$ 





### Limits



# Summary

- $\star$  A complete search strategy for N from  $W^{\pm} \to e^{\pm}e^{\pm}\mu^{\mp}v / \mu^{\pm}\mu^{\pm}e^{\mp}v$ 
  - $\rightarrow$  m<sub>N</sub> = 20, 50 GeV @ 14 TeV LHC, 3000 fb<sup>-1</sup>;
  - → CC & MVA;
  - → MVA greatly enhance the limits;
  - → limits for 20 GeV better.
- ★ Discovering / Excluding N
  - $\rightarrow$  Dirac:  $s \ge 0.25$  @  $3\sigma$ ;
  - → Majorana  $r \sim 1$ :  $s \ge 0.11$  @  $3\sigma$   $r \sim 10$ , limits on  $|U_{Nu}|^2$  stronger.

- $|U_{Ne}|^2 = \frac{1}{2 \times 10^6} \times (1 + r) \times s$
- $\left| \mathbf{U}_{\mathbf{N}\mu} \right|^2 = \frac{1}{2 \times 10^6} \times \left( 1 + \frac{1}{\mathbf{r}} \right) \times \mathbf{s}$

- ★ Discriminating Dirac / Majorana
  - → using kinematical distri. & MVA
  - → non-trivial, flavor of v undetectable;
  - $\rightarrow$  *r* ~ 1: *s* ≥ 3.10 @ 3 $\sigma$ ;
  - $\rightarrow r \sim 10$ , limits on  $|U_{Nu}|^2$  stronger.
- ★ Analysis can be extended to 100 TeV pp.

Thank you for your attention!

Any Questions?

# Backup Slide

### **Fake-lepton Simulation**



FIG. 6. Validation results for fake lepton simulation. Black dots indicate experimental results in Ref. [31]. Our simulated results for  $\gamma^*/Z$  + jets,  $t\bar{t}$ , and WZ + jets are given by upper light gray bars, middle brown bars, and bottom pink bars, respectively. Eight bin categories are (1) 0-bjet, 1-OSSF,  $M_{\ell^+,\ell^-} < 75$  GeV, (2) 0-bjet, 1-OSSF,  $|M_{\ell^+,\ell^-} - M_Z| < 15$  GeV, (3) 0-bjet, 1-OSSF,  $M_{\ell^+,\ell^-} > 105$  GeV, (4) 0-bjet, 0-OSSF, (5–8) are the same as the first four bins, but with at least one b-jet.

A pheno. FL simulation method [E. Izaguirre, B. Shuve, hep-ph/1504.0247]

- → data-driven methods to estimate the fake lepton contributions
- → modeling parameters, pinned down by validating simulated results against actual experimental ones.
- Mistag rate
   (probability of converting a jet to a lepton)

$$\epsilon_{j \to \ell}(p_{\mathrm{T}j}) = \epsilon_{200} \left[ 1 - (1 - r_{10}) \frac{200 - p_{\mathrm{T}j}/\mathrm{GeV}}{200 - 10} \right]$$

2. Transfer function (how much  $p_T$  is transferred into the lepton)

$$p_{\mathrm{T}\ell} \equiv (1 - \alpha) p_{\mathrm{T}j}$$

$$\mathcal{T}_{j \to \ell}(\alpha) = \frac{1}{\mathcal{N}} \exp\left[-\frac{(\alpha - \mu)^2}{2\sigma^2}\right]$$

# **Backup Slide** Interesting Mass Scales of m<sub>N</sub>



# Backup Slide

# Productions @ pp Colliders

$$q\bar{q} \to Z^{(*)} \to \nu N$$
  
 $gg \to H^{(*)} \to \nu N$ 



#### almost unobserved

(final states I+I+, I± suffer from huge background)

(no resonance enhancement)



### Mostly studied

(important for  $m_N < 1 \text{ TeV}$ )



More important for  $m_N > 1 \text{ TeV}$ 

# Backup Slide

from [S. Antusch, E. Cazzato, O. Fischer, hep-ph/1612.02728]

