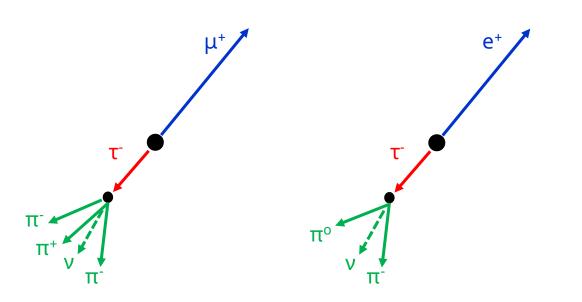
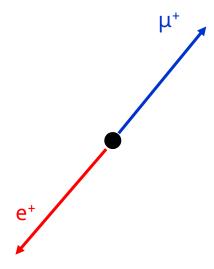
# Lepton Flavour Violation searches at FCC-ee

1st FCC Physics Workshop 19th January 2017

Mogens Dam
Niels Bohr Institute
Copenhagen, Denmark

Updated to correct a few typos

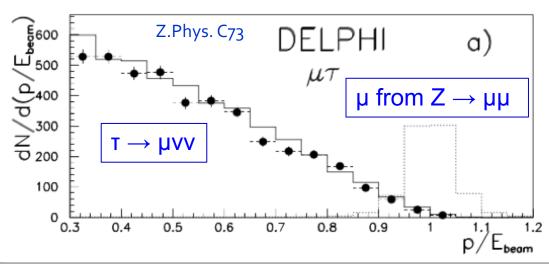

#### **Motivation and Outline**


◆ FCC-ee will produce very large event samples. Interesting for rare decay searches, in particular those of Lepton Flavour Violation

```
    10<sup>12</sup> Z decays (possibly 10<sup>13</sup>)
    Hence 6.7 x 10<sup>10</sup> τ decays (possibly 6.7 x 10<sup>11</sup>)
```

- Main motivation for this work
  - □ Identify **Detector Requirements** to make optimal use of FCC-ee sample for LFV
- Outline:
  - □ Z decays
    - \* A first study of  $Z \rightarrow e\tau$ ,  $Z \rightarrow \mu\tau$
    - ❖ Some thoughts of  $Z \rightarrow e\mu$
  - **α** τ decays
    - \* A first study of  $\tau \rightarrow e\gamma$ ,  $\tau \rightarrow \mu\gamma$
    - Some thoughts on  $\tau^- \rightarrow l^- l^+ l^-$

# LFV Z decays

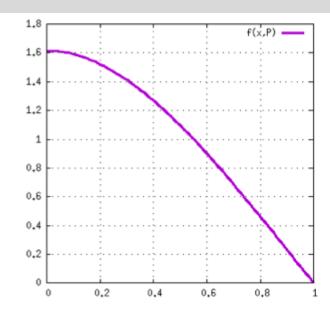


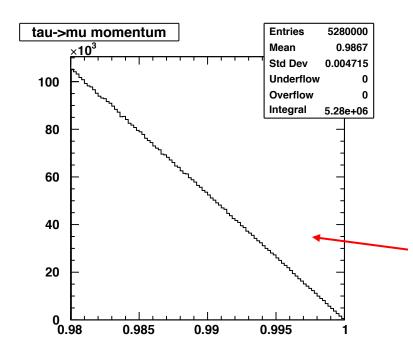



## $Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$

#### ◆ Current limits:

- $\Box$  Br(Z  $\rightarrow$  et) < 9.8 × 10<sup>-6</sup> LEP/OPAL (4 × 10<sup>6</sup> Z decays)
- $\Box$  **Br**(**Z**  $\rightarrow$   $\mu$ **t**) < **12.**  $\times$  **10**<sup>-6</sup> LEP/DELPHI (4  $\times$  10<sup>6</sup> Z decays)
- Method:
  - Identify clear tau decay in one hemisphere
  - □ Look for "beam-energy" lepton (electron or muon) in other hemisphere
- ◆ Limitation: How to define "beam-energy" lepton
  - $\Box$  Unavoidable background from  $\tau \to \text{evv} / \tau \to \mu \nu \nu$  with two (very) soft neutrinos
  - □ How much background depends on energy/momentum resolution
  - □ Example DELPHI





### $\tau \rightarrow \mu \nu \nu$ momentum spectrum

In terms of  $x=p_{\mu}/p_{
m beam}$ 

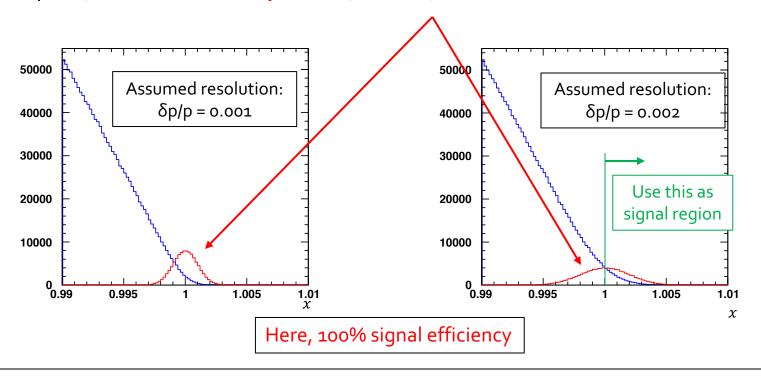
$$f(x) = \frac{1}{\Gamma} \frac{d\Gamma}{dx} = \frac{1}{3} \left[ \left( 5 - 9x^2 + 4x^3 \right) + P \left( 1 - 9x^2 + 8x^3 \right) \right]$$

where *P* is tau polarisation.





Expand to first order in (x-1) around  $x \simeq 1$ 


$$f(x) = 2[1 - P](1 - x) \simeq 2.3(1 - x)$$

for P = -0.15.

For  $10^{12}$  Z decays,  $5.3 \times 10^6$  muons with x>0.98

## Insert signal and smear track momenta

• In these plots, assume  $Br(Z \rightarrow \tau \mu) = 10^{-7}$ , i.e. 100,000 muons



#### Sensitivity to signal:

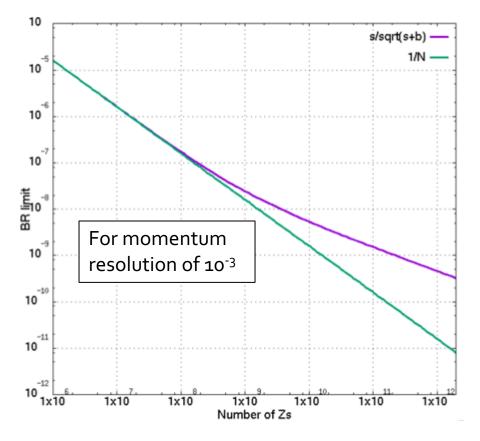
- Since number of background events is high, use primitive estimator:  $s/\sqrt{b}$
- s and b are number of signal and background events, respectively, in signal region
  - For now, chose signal region as **x>1** 
    - Close to optimal cut value
    - Eventually one will do more sophisticated statistical analysis, but for now...
- 95% c.l. corresponds approximately to number of signal events equal:  $s_{95} = 2\sqrt{b}$

# Sensitivity estimate for 10<sup>12</sup> Z decays

Before presenting estimate, have to make some assumption about signal and background efficiency (assumed to be the same).

Here assume  $\varepsilon = 25\%$ .

| Momentum resolution [10 <sup>-3</sup> ] | #background events | #signal events for 2 $\sigma$ excess | Limit Br(Z→τμ)<br>[1o <sup>-9</sup> ] |
|-----------------------------------------|--------------------|--------------------------------------|---------------------------------------|
| 0.5                                     | 420                | 41                                   | 0.33                                  |
| 1                                       | 1640               | 81                                   | 0.65                                  |
| 2                                       | 6550               | 162                                  | 1.3                                   |
| 4                                       | 26200              | 324                                  | 2.6                                   |

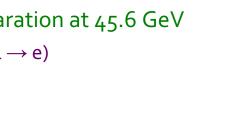

- ◆ Observe, that limit scales linearly with momentum resolution:
  - □ With linearly falling momentum spectrum, **b** scales quadratic in resolution
  - $\Box$  Since limit depends on  $\sqrt{b}$ , limit is then linear in resolution

ILC detectors report  $\sigma(p_T)/p_T = 2x10^{-5} p_T \oplus 1x10^{-3}$ . Hence **1.4 x 10<sup>-3</sup>** at p = 45.6 GeV.

FCC-ee beam energy spread is about 0.5 x10<sup>-3</sup> at 45.6 GeV

## Dependence on number of Zs

In general case, when number of background events can be small, use estimator of significance:  $s/\sqrt{(s+b)}$ 

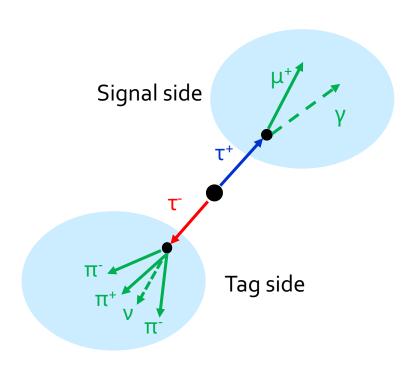


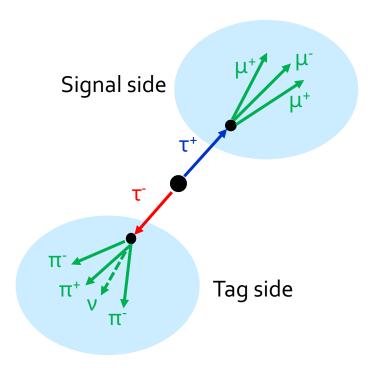

#### As for all searches, limit falls

- □ as 1/N as long as number of background events is negligible
- $\square$  as 1/ $\sqrt{N}$  when number of background events is sizeable

## $Z \rightarrow e\mu$

- ◆ Current limit:
  - $\square$  **7.5**  $\times$  **10**<sup>-7</sup> **LHC/ATLAS** (20 fb<sup>-1</sup>; no candidates)
  - □ **1.7**  $\times$  **10**<sup>-6</sup> **LEP/OPAL** (4.0  $\times$  10<sup>6</sup> Z decays: no candidates)
- ◆ Clean experimental signature:
  - □ Beam energy electron vs. beam energy muon
- Main experimental challenge:
  - □ Catastrophic bremsstrahlung energy loss of muon in electromagnetic calorimeter
    - \* Muon would deposit (nearly) full energy in ECAL: Misidentification  $\mu \rightarrow e$
    - ❖ NA62: Probability of muon to deposit more than 95% of energy in ECAL: 4 x 10-6
    - Possible to reduce by
      - ECAL longitudinal segmentation: Require energy > mip in first few radiation lengths
      - Aggressive veto on HCAL energy deposit and muon chamber hits
    - ❖ If dE/dx mesaurement available, some independent e/µ separation at 45.6 GeV
      - Could give handle to determine misidentification probability  $P(\mu \rightarrow e)$
      - Notice: ATLAS uses transition radiation as part of electron ID.
- ◆ FCC-ee:
  - □ Misidentification from catastrophic energy loss corresponds to limit of about Br(Z  $\rightarrow$ e $\mu$ )  $\simeq$  10<sup>-7</sup>
  - □ Possibly do O(10) better than that (?)





Br(Z $\rightarrow$ e $\mu$ ) ~ 10<sup>-8</sup>

OPAL DATA 91-94

Z.Phys. C67

# LFV τ decays

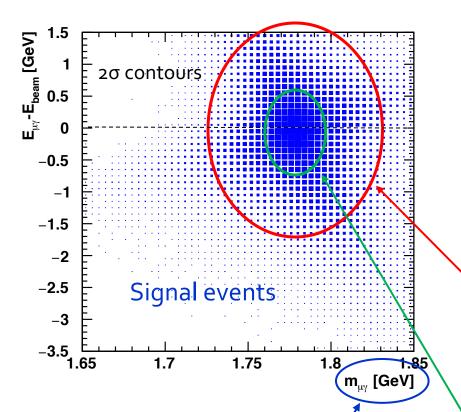




### $\tau^{-} \rightarrow e^{-}\gamma$ , $\tau^{-} \rightarrow \mu^{-}\gamma$

◆ Current limits:

```
□ Br(\tau^- \to e^- \gamma) < 3.3 \times 10^{-8} BaBar, 10.6 GeV; 4.8 × 10<sup>8</sup> e^+ e^- \to \tau^+ \tau^-: 1.6 expected bckg 
□ Br(\tau^- \to \mu^- \gamma) < 4.4 \times 10^{-8} 3.6 expected bckg
```


- Main background: Radiative events (IRS+FSR),  $e^+e^- \rightarrow \tau^+\tau^-\gamma$ 
  - $\Box$   $\tau \rightarrow \mu \gamma$  faked by combination of  $\gamma$  from ISR/FSR and  $\mu$  from  $\tau \rightarrow \mu \gamma$
- ◆ Prospects
  - □ Belle2 with similar resolution as BaBar will collect x100 statistics at SuperKEKb
  - □ Limits could reduce by factor 1/10, i.e.

$$\star Br(\tau^- \rightarrow e^- \gamma) \simeq Br(\tau^- \rightarrow \mu^- \gamma) < 3 - 4 \times 10^{-9}$$

- ◆ FCC-ee
  - □ With similar statistics as Belle2 (~  $5 \times 10^{10} \text{ T}^{+}\text{T}^{-}$ ), what can be expected?
    - \* Perform simple study of signal and the main background,  $e^+e^- \rightarrow \tau^+\tau^-\gamma$

# $\tau \rightarrow \mu \gamma$ Study – The signal

• Generate **signal events** with pythia8:  $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma)$ , with  $\tau^- \rightarrow \mu^- \gamma$ 



In order to de-correlate the E and m variables, this mass,  $m_{\gamma\mu,}$  is in fact the measured mass scaled by measured energy over beam energy:

$$m_{\gamma\mu} = m_{raw} x (E_{\gamma\mu}/E_{beam})$$

Detector resolution a la ILD assumed:

Muon momentum [GeV]

$$\sigma(p_T)/p_T = 2x10^{-5} x p_T \oplus 1x10^{-3}$$

Photon ECAL energy [GeV]

$$\sigma(E)/E = 0.165/\sqrt{E} \oplus 0.010/E \oplus 0.011$$

Photon ECAL spatial

$$\sigma(x) = \sigma(y) = (6/E \oplus 2) \text{ mm}$$

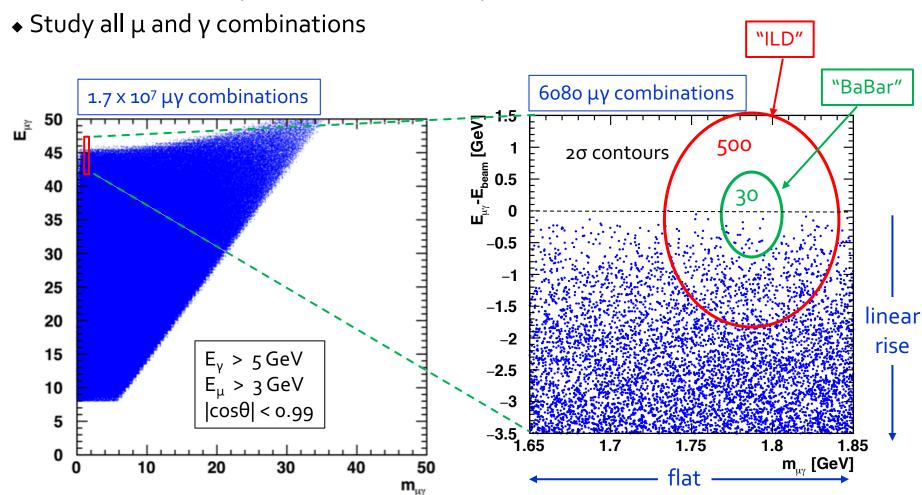
From here, determine ILD-like detector resolution for  $\tau \rightarrow \mu \gamma$ 

$$\sigma(m_{v\mu}) = 26 \text{ MeV}; \quad \sigma(E_{v\mu}) = 850 \text{ MeV}$$

For comparison, **BaBar** resolutions for this analysis are quoted to be

$$\sigma(m_{\gamma\mu}) = 8.3 \text{ MeV}; \qquad \sigma(E_{\gamma\mu}) = 42 \text{ MeV}$$

which when scaled to 45.6 GeV gives


$$\sigma(m_{\gamma\mu}) = 8.3 \text{ MeV}; \qquad \sigma(E_{\gamma\mu}) = 360 \text{ MeV}$$

# $\tau \rightarrow \mu \gamma$ Study – The background

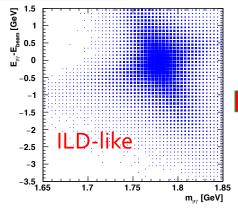
♦ Background: Generate 5 x 10<sup>8</sup> events e<sup>+</sup>e<sup>-</sup> → Z → τ<sup>+</sup>τ<sup>-</sup>(γ) → (μ<sup>+</sup>νν)(μ<sup>-</sup>νν)(γ)

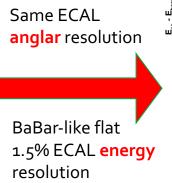
 $\Box$  1 x 10<sup>9</sup>  $\tau \rightarrow \mu \nu \nu$  decays corresponding to

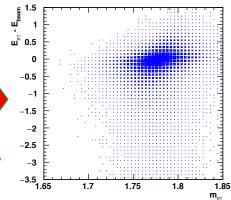
• 5.7  $\times$  10<sup>9</sup>  $\tau$  decays from 8.4  $\times$  10<sup>10</sup> Z decays



# $\tau \rightarrow \mu \gamma$ Study (iii)


• Neglecting other background sources and assuming an overall selection efficiency of 8% these are the *lower bounds* on the Br limit which can be set


□ ILD-like resolution:  $7.9 \times 10^{-9}$ 


□ BaBar-like resolution: 1.9 x 10<sup>-9</sup>

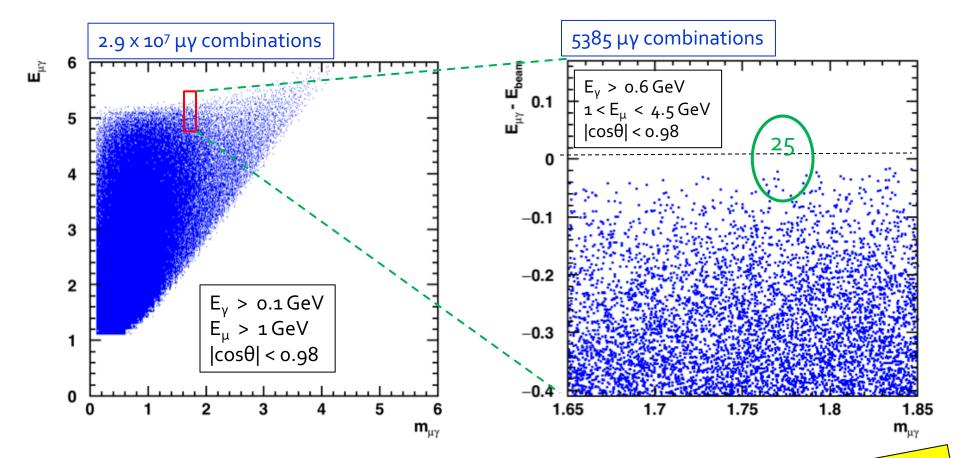
- Note
  - Background distribution is flat in mass
    - \* Background rises **linearly** with  $\sigma_m \Rightarrow$  Limit decreases as  $\sqrt{\sigma_m}$
  - $factor{}$  Background distribution **rises linearly in energy** away from the signal at  $E_{beam}$ 
    - \* Background rises **quadratically** with  $\sigma_E \Rightarrow$  Limit decreases as  $\sigma_E$
- Highest gain from improvement of energy measurement

#### Play a game








 $\sigma_{\rm m}\colon 27 \to 22 \, \text{MeV}$   $\sigma_{\rm F}\colon 850 \to 270 \, \text{MeV}$ 

BR limit: 2.2 x 10<sup>-9</sup>

## $\tau \rightarrow \mu \gamma$ Study – Check of method

Cross check: Perform similar study at B-factory,  $\sqrt{s} = 10.6$  GeV

□ Again 5 x 10<sup>8</sup> events  $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$ 



From this study, estimated limit: 1.9 x 10<sup>-9</sup>

Compare to my extrapolation of current BaBar limit: ~3-4 x 10<sup>-9</sup>

Agrees within a factor 2
Not too bad

# $\tau \rightarrow \mu \gamma$ Study – Rounding off

#### ◆ Rounding off

- $\Box$  Both facilities, FCC-ee and SuperKEKb, will produce  $\sim 5 \times 10^{10} \, \text{ T}$  decays
- $\Box$  Despite factor ~10 difference in collision energies, this study indicates that the two facilities could provide comparable limits on  $\tau \to \mu \gamma$ 
  - ❖ Limits are of the order few x 10<sup>-9</sup>, i.e. a factor 10 below current
- □ The potential to set limits depend critically on detector resolution, in particular the ECAL resolution for photons
  - Energy resolution
    - Showed factor 4 improvement on limit going from 16.5%/√E to 1.5% flat
  - Spatial resolution
    - Typical **opening angle** between  $\mu$  and  $\gamma$  in  $\tau \to \mu \gamma$  is **70 mrad**; i.e. **140 mm** at ECAL surface. Need resolution at few mm level for mass resolution.

### $au^{\scriptscriptstyle -} ightarrow l^{\scriptscriptstyle -} l^{\scriptscriptstyle +} l^{\scriptscriptstyle -}$

#### ◆ Current limits:

- □ All 6 combs. of  $e^{\pm}$ ,  $\mu^{\pm}$ : Br  $\lesssim$  2 x 10<sup>-8</sup> Belle@10.6 GeV; 7.2 x 10<sup>8</sup>  $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$ : no cand. □  $\mu^{-}\mu^{+}\mu^{-}$ : Br < 4.6 x 10<sup>-8</sup> LHCb 2.0 fb<sup>-1</sup>: background candidates
- Prospects
  - □ LHCb @ HL-LHC
    - \* Expect up to 1000 times higher integrated luminosity
    - \* Current search has backgrounds: Limit scales as  $1/\sqrt{L}$ 
      - Possibly reach limit of order 2 x 10<sup>-9</sup>

#### □ Belle2 @ SuperKEKB

- ♦ Collect 50 ab<sup>-1</sup>  $\Rightarrow$  4.6 x 10<sup>10</sup> τ<sup>+</sup>τ<sup>-</sup> pairs (x 64 wrt Belle1)
- ❖ With current selection, will have 0.5-10 background events depending on channel
  - Limits will not continue to scale linear in 1/luminosity.
  - Possibly reach limits of order Br  $\lesssim$  1 x 10<sup>-9</sup>

#### □ 10<sup>12</sup> Zs @ FCC-ee

- \* Similar statistics as Belle2: 3.4 x 10<sup>10</sup> τ<sup>+</sup>τ<sup>-</sup> pairs
- \* No obvious reasons for major differences in efficiencies & backgrounds wrt Belle
  - Reach limits similar to Belle2.

### **Conclusions**

Strong tests of Lepton Flavour Violation can be made from the large FCC-ee data sample Caveat: First look

- ◆ 10<sup>12</sup> Z decays:
  - $\Box$  For decays **Z**  $\rightarrow$  **et and Z**  $\rightarrow$   $\mu$ **t**, BRs down to **10**<sup>-9</sup> can be probed
    - \* The reach is limited by the irreducible background from  $Z \to \tau \tau$ , with one tau decaying to  $\tau \rightarrow \text{evv} \ (\tau \rightarrow \mu \nu \nu)$ : end-point of momentum spectrum
    - \* Limit scales proportional to the  $\mu$  (e) **momentum resolution** at p=45.6 GeV.
  - $\Box$  For decays  $Z \rightarrow e\mu$ , BRs down to  $10^{-8}$  may be possibly probed
    - \* The reach is probably limited by catastropic energy loss of muons in ECAL
    - \* Some control via longitudinal segmentation in ECAL and dE/dx particle ID
- From 6.7 x 10<sup>10</sup> τ decays FCC-ee will be able to set limits similar to Belle from its comparable data sample:
  - $\Box$  For the decays  $\tau \to e \gamma$  and  $\tau \to \mu \gamma$ , BRs down to few x 10<sup>-9</sup> may be probed
    - ❖ Here "few" varies by up to a factor 4 depending on the assumed ECAL energy resolution
  - $\Box$  For the decays  $\tau^- \to l^- l^+ l^-$  a limit **below 10**-9 will be within reach