Electroweak Precision Observables: Theory Status

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

CERN, 01/2017

FCC-ee physics WG2: Precision EW Calculations

Co-convenor/editor: Ayres Freitas

Contributors (so far): M. Beneke, A. Blondel, A. Hoang, P. Janot, J. Reuter, C. Schwinn, S. Weinzierl, . . .

- 1. Introduction
- 2. Electroweak Precision Observables
- 3. Status

(FCC-ee) Future \Rightarrow second talk

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

Experimental situation:

LHC/ILC/FCC-ee/CEPC/... will provide (high!) accuracy measurements!

Theory situation:

- Measurements are performed using theory predictions
- measured observables have to be compared with theoretical predictions (in various models: SM, MSSM, ...)

Full uncertainty is given by the (linear) sum of experimental and theoretical uncertainties!

FCC-ee physics WG2 – Precision EW Calculations: Write-up

Theoretical uncertainties for electroweak and Higgs-boson precision measurements at the FCC-ee

Conveners: A. Freitas¹, S. Heinemeyer², Contributors: M. Beneke³, A. Blondel⁴, A. Hoang⁵, P. Janot⁶, J. Reuter⁷, C. Schwinn⁸, and S. Weinzierl⁹

 \Rightarrow will go into CDR!

 \Rightarrow should be taken into account by other (exp) groups!

 \Rightarrow Here: current status of EWPO TH calculations

Where we need theory prediction:

- 1. Prediction of the measured quantity Example: M_W
 - \rightarrow at the same level or better as the experimental precision
- 2. Prediction of the measured process to extract the quantity Example: $e^+e^- \rightarrow W^+W^-$
 - \rightarrow better than then ''pure'' experimental precision

Where we need theory prediction:

1. Prediction of the measured quantity Example: M_W

 \rightarrow at the same level or better as the experimental precision

- 2. Prediction of the measured process to extract the quantity Example: $e^+e^- \rightarrow W^+W^-$
 - \rightarrow better than then ''pure'' experimental precision

Two types of theory uncertainties:

- 1. intrinsic: missing higher orders
- 2. parametric: uncertainty due to exp. uncertainty in SM input parameters Example: m_t , m_b , α_s , $\Delta \alpha_{had}$, ...

Options for the evaluation of intrinsic uncertainties:

- 1. Determine all prefactors of a certain diagram class (couplings, group factors, multiplicities, mass ratios) and assume the loop is $\mathcal{O}(1)$
- 2. Take the known contribution at *n*-loop and (n-1)-loop and thus estimate the n + 1-loop contribution:

$$\frac{(n+1)(\text{estimated})}{n(\text{known})} \approx \frac{n(\text{known})}{(n-1)(\text{known})}$$

⇒ simplified example! Has to be done "coupling constant by coupling constant"

3. Variation of $\mu^{\overline{MS}}$ (QCD!, EW?)

- 4. Compare different renormalizations
- \Rightarrow Mostly used here: 1 & 2

2. Electroweak Precision Observables

Comparison of observables with theory:

Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, a_{\mu}, M_h$$
Theory:
 ${\rm SM, MSSM}, \ldots$ \downarrow

Test of theory at quantum level: Sensitivity to loop corrections, e.g. \boldsymbol{X}

SM: limits on M_H , BSM: limits on M_X

Very high accuracy of measurements and theoretical predictions needed \Rightarrow only models "ready" so far: SM, MSSM

The EWPO:

 M_W

(best from threshold scan)

 $\sigma_{\text{had}}^0 = \sum_q \sigma_q(M_Z^2),$ $\Gamma_Z = \sum_f \Gamma[Z \to f\bar{f}],$ (from a fit to $\sigma_f(s)$ at various values of s) $R_{\ell} = \left[\sum_{q} \sigma_q(M_Z^2)\right] / \sigma_{\ell}(M_Z^2), \qquad (\ell = e, \mu, \tau)$ $R_q = \sigma_q(M_Z^2) / \left[\sum_q \sigma_q(M_Z^2) \right], \qquad (q = b, c)$ $A_{\mathsf{FB}}^{f} = \frac{\sigma_{f}(\theta < \frac{\pi}{2}) - \sigma_{f}(\theta > \frac{\pi}{2})}{\sigma_{f}(\theta < \frac{\pi}{2}) + \sigma_{f}(\theta > \frac{\pi}{2})} \equiv \frac{3}{4}\mathcal{A}_{e}\mathcal{A}_{f},$ $A_{\mathsf{LR}}^{f} = \frac{\sigma_{f}(P_{e} < 0) - \sigma_{f}(P_{e} > 0)}{\sigma_{f}(P_{e} < 0) + \sigma_{f}(P_{e} > 0)} \equiv \mathcal{A}_{e}|P_{e}|$ $\mathcal{A}_{f} = 2 \frac{g_{V_{f}}/g_{A_{f}}}{1 + (g_{V_{f}}/g_{A_{f}})^{2}} = \frac{1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}^{J}}{1 - 4|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f}} + 8(|Q_{f}|\sin^{2}\theta_{\text{eff}}^{f})^{2}} \ (f = \ell, b, \ldots)$

3. Status

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

Quantity	current experimental unc.	curr	ent intrinsic unc.
M_W [MeV]	15	4	$(\alpha^3, \alpha^2 \alpha_s)$
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	16	4.5	$(\alpha^3, \alpha^2 \alpha_s)$
Γ_Z [MeV]	2.3	0.5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$
$R_b \ [10^{-5}]$	66	15	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$
R_l [10 ⁻³]	25	5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$

Quantity	current experimental unc.	curr	ent intrinsic unc.
M_W [MeV]	15	4	$(\alpha^3, \alpha^2 \alpha_s)$
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	16	4.5	$(\alpha^3, \alpha^2 \alpha_s)$
Γ_Z [MeV]	2.3	0.5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$
$R_b \ [10^{-5}]$	66	15	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$
R_l [10 ⁻³]	25	5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$

Parametric uncertainties:

Quantity	$\delta m_t = 0.9 \text{ GeV}$	$\delta(\Delta \alpha_{\rm had}) = 10^{-4}$	$\delta M_Z = 2.1 \text{ MeV}$
$\delta M_W^{\sf para}$ [MeV]	5.5	2	2.5
$\delta \sin^2 \theta_{\text{eff}}^{\ell,\text{para}}$ [10 ⁻⁵]	3.0	3.6	1.4

Quantity	current experimental unc.	curr	ent intrinsic unc.
M_W [MeV]	15	4	$(\alpha^3, \alpha^2 \alpha_s)$
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	16	4.5	$(\alpha^3, \alpha^2 \alpha_s)$
Γ_Z [MeV]	2.3	0.5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$
$R_b \ [10^{-5}]$	66	15	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$
R_l [10 ⁻³]	25	5	$(\alpha_{bos}^2, \alpha^3, \alpha^2 \alpha_s)$

Parametric uncertainties:

Quantity	$\delta m_t = 0.9 \text{ GeV}$	$\delta(\Delta \alpha_{\rm had}) = 10^{-4}$	$\delta M_Z = 2.1 \text{ MeV}$
$\delta M_W^{\sf para}$ [MeV]	5.5	2	2.5
$\delta \sin^2 \theta_{\text{eff}}^{\ell,\text{para}}$ [10 ⁻⁵]	3.0	3.6	1.4

⇒ Current intrinsic/parametric uncertainties are substantially smaller than current experimental uncertainties :-) Additional uncertainty for M_W from threshold scan:

Not only $e^+e^- \rightarrow W^{(*)}W^{(*)}$, but $e^+e^- \rightarrow WW \rightarrow 4f$ needed

Current status:

full one-loop for $2 \rightarrow 4$ process

[A. Denner, S. Dittmaier, M. Roth, D. Wackeroth '99-'02]

 \Rightarrow extraction of M_W at the level of $\sim 6 \text{ MeV}$

Most recent improvement:

leading 2L corrections from EFT [Actis, Beneke, Falgari, Schwinn '08]

 \Rightarrow impact on M_W at the level of $\sim 3~{\rm MeV}$

 \Rightarrow well under control for LEP data

Overview about all EWPO:

Surprisingly good agreement: χ^2 /d.o.f. = 18.1/14 (p = 20%)

Most quantities measured with 1%–0.1% precision

GFitter coll. '14

Overview about all EWPO:

Surprisingly good agreement: χ^2 /d.o.f. = 18.1/14 (p = 20%)

Most quantities measured with 1%–0.1% precision

A few interesting deviations:

M_{W}	$(\sim 1.4\sigma)$
σ_{had}^{0}	$(\sim 1.5\sigma)$
$A_{\ell}(SLD)$	$(\sim 2\sigma)$
A^b_{FB}	$(\sim 2.5\sigma)$
$(g_{\mu} - 2)$	$(\sim 3\sigma)$

GFitter coll. '14

Current fit to M_H :

[GFitter '14]

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

The above numbers have all been obtained assuming the SM as calculational framework.

The SM constitutes the model in which highest theoretical precision for the predictions of EWPO can be obtained.

We know that BSM physics must exist! (DM, gravity, ...)

As soon as BSM physics will be discovered, an evaluation of the EWPO in any preferred BSM model will be necessary.

The corresponding theory uncertainties, both intrinsic and parametric, can then be larger (as known for the MSSM).

A dedicated theory effort (beyond the SM) would be needed in this case.