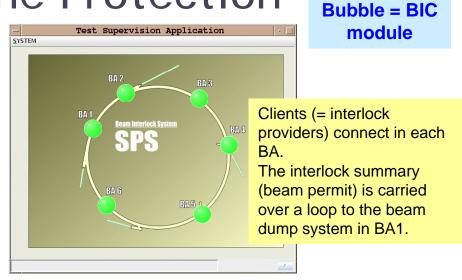
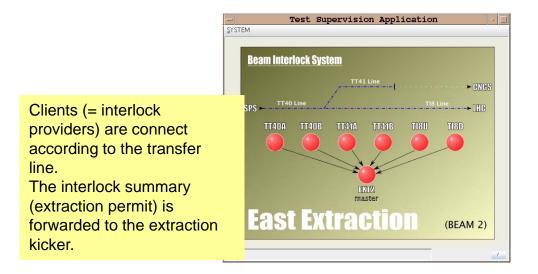
High Intensity Beams and Radiation Issues

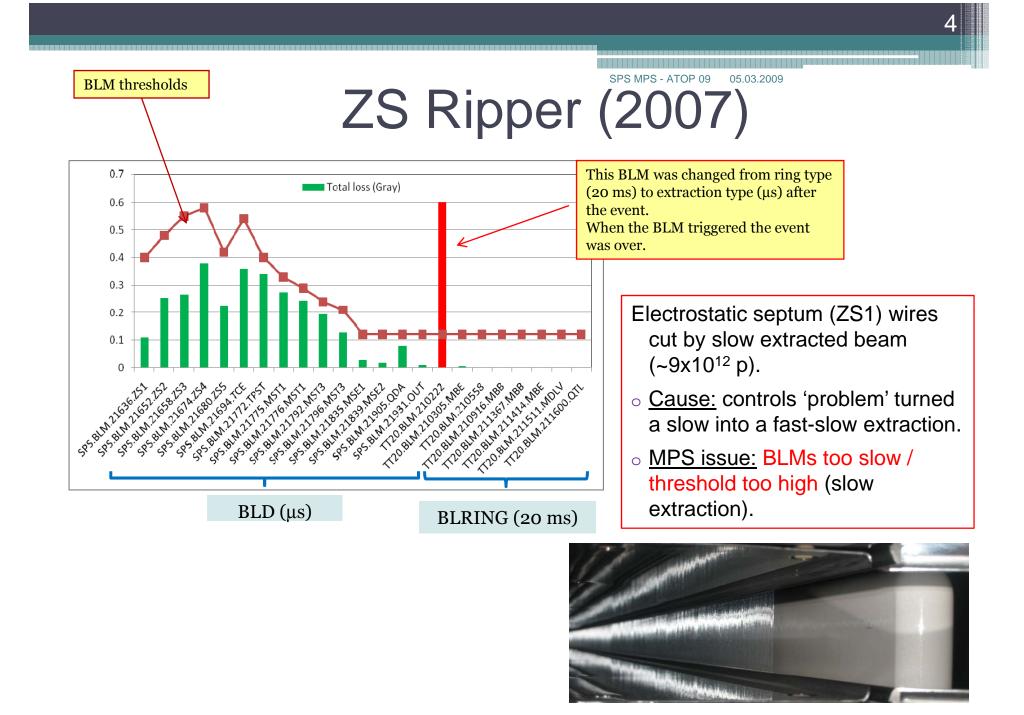
Session 3 of ATOP Days 2009 Doris Forkel-Wirth, DG-SCR Bettina Mikulec, BE-OP

Presentations of Session 3

- Review of the machine protection system in the SPS *J. Wenninger, BE-OP*
- Review of the machine protection system in the PS complex *K. Hanke, BE-OP*
- RF limitations while running at high intensities in the injectors *E. Jensen, BE-RF*
- ISOLDE radioactive air handling *R. Catherall, EN-STI*
- Status of RAMSES and ARCON radiation monitoring systems *M. Widorski, DG-SCR*
- Supercycles in the SPS towards full ppm operation and impact on the equipment
 J. Wenninger, BE-OP
- Where do we stand 3 years after the recommendations from the BLRWG *S. Gilardoni, BE-ABP*


Review of the Machine Protection System in the SPS

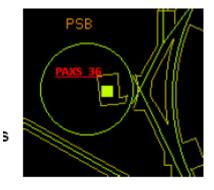

All SPS Machine Protection issues are handled together with the LHC in the (LHC) Machine Protection Panel (MPP) -> Coherent approach


1 Ring beam permit loop, 2 extraction interlock systems based on BIC modules (same hardware as in LHC)

SPS Hardware Interlock Systems: experience with the new interlock hardware is excellent

SPS Software Interlock System: experience with SIS is excellent

Review of the Machine Protection System in the SPS - Recommendation


- CNGS and LHC transfer lines MPS: in good shape
 - about 50% of the SPS hardware interlocks are concentrated in those TL
 - interlock coverage is very good but not yet ideal

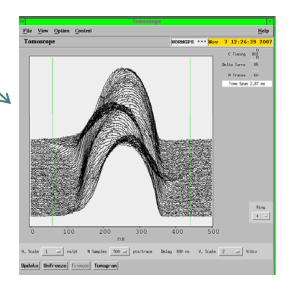
Recommendations:

- SPS ring and TT20:
 - Require significant improvement of the protection system:
 - New BLM electronics (faster and multiple thresholds and integration times)
 - Fast BPMs for vertical plane
- Simulations required to redefine BLM thresholds, integration times and optimum position/coverage
- Install additional BLMs to increase coverage

Review of the Machine Protection System in the PS complex

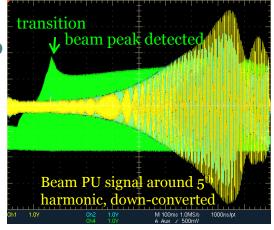
- LINAC 2, PS, AD: Interlocks work well
- Booster issues in 2008:
 - ISOLDE beam with destination DUMP sent into the PS
 - Beam to ISOLDE while Request OFF
 - Access interlock of floor -3 during beam operation (stair + elevator)
- ISOLDE:
 - Broken belt in ventilation system triggered radiation (!) alarm in CCC
 - Wrong beam received; now interlock through new VISTAR

Review of the Machine Protection System in the PS Complex -Recommendation


- Study to prohibit full NTOF beam into East Area for parasitic cycles
- Implementation of new ISOLDE and LINAC2 watchdog systems to be carefully prepared (BI/CO/OP collaboration)
- Clear procedures to be provided to operation for new interlocks (PSB elevator, ISOLDE ventilation alarm, interlock during Linac4 construction)
- Extensive testing of failure scenarios for new equipment connected to interlock system or after control system changes required

RF limitations while running at high intensities in the injectors

• High intensity beams will confront RF systems with a number of stability limits (or will approach machine instability thresholds).

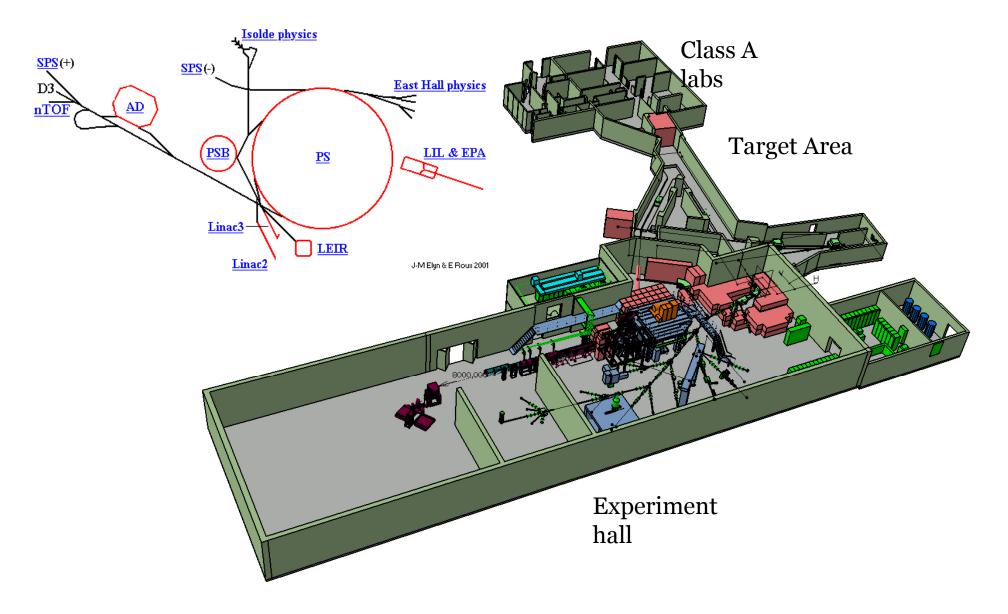

• PSB:

- Co4 power limitations (air-cooling; issue for faster machine cycling)
- Instability at low Co4 voltage and high BL.
- "Ring 4 problem" (transverse plane)
 - Maybe due to increased impedance
 - Saturation of transverse damper due to additional power demand
- Co2 beam loading in view of Linac4
 - Intensity limit of ~1.65 10¹³ per ring with Linac4?

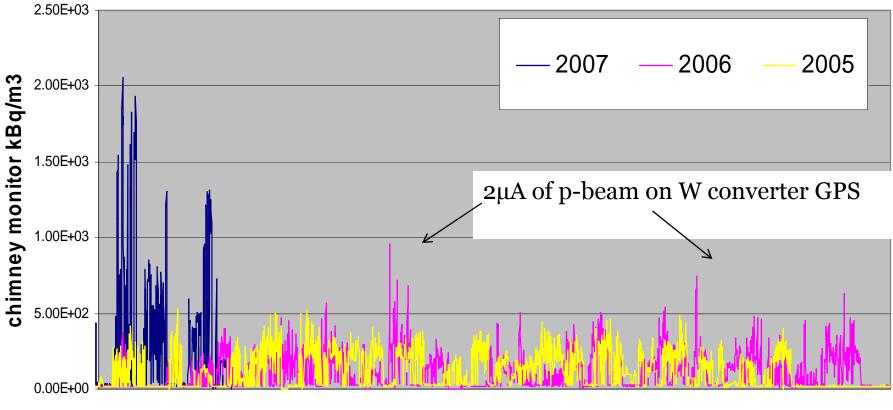
RF limitations while running at high intensities in the injectors

- PS:
 - Phase drift at low voltages due to beam loading
 - Over-current at γ_{tr} crossing with high beam loading (tube protection was modified in 2008)
 - Beam losses at *γ_{tr}* (large excursions of MRP too fast for radial loop; additional fast PU has been installed)
 - Insufficient transient beam-loading compensation for an asymmetrically filled machine
 - Coupled bunch instabilities above γ_{tr} for LHC beams (use C10 as long. kicker in feedback loop; works up to nominal intensity)
 - Bunch lengthening due to residual impedance of 40 and 80 MHz cavities

RF limitations while running at high intensities in the injectors

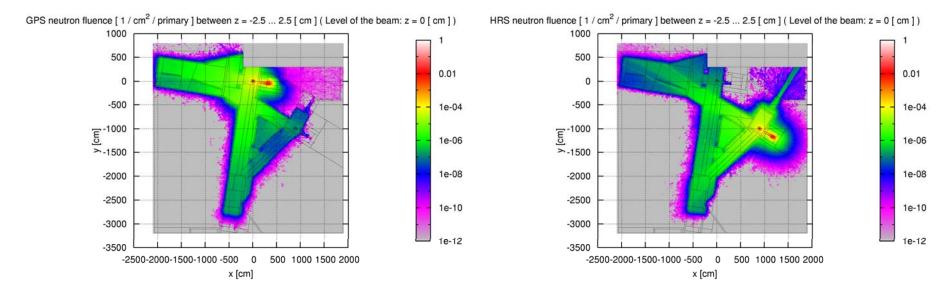

- SPS:
 - 200 MHz system: Siemens (28 tetrodes) and Philips (72 tetrodes)
 - ageing tetrodes (more wear with CNGS operation; 16 tubes broken in 2008!)
 - power couplers: ceramics upgraded, but still limited (transition coupler cavity)
 - coaxial lines limited to 750 kW
 - 800 MHz system: essential at high intensities to cope withdominant coupled bunch instability
 - The system is dying! (klystrons, transformers)
 - Was 'just' possible to supply required 800 MHz in 2008
 - \checkmark System renovation underway; completion in 2013
 - Maintenance work had to be reduced from 2005; increased number of interventions

RF limitations while running at high intensities in the injectors -Recommendations


• PSB:

- Study feasibility of water-cooling for PSB CO4 system to prepare a possible 900 ms cycle operation
- Clarify if Co2 needs upgrade for Linac4 operation or prove that new digital LL RF system could improve situation (LL RF loops)
- Implement power upgrade of PSB transverse damper (in white paper)
- SPS:
 - 200 MHz: Tubes are consumables. For reliable operation, purchase a sufficient number of tubes annually and keep a healthy stock
 - The exact needs are a function of CNGS 'statistics'
 - Allow for a regular 4 months annual maintenance (mandatory for reliability)
 - Improve the connections between power coupler and the 200 MHz cavities

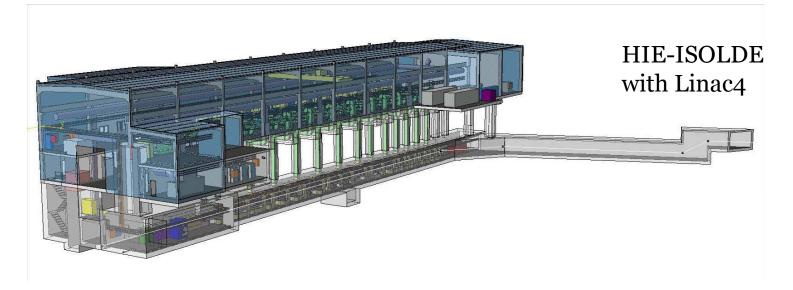
ISOLDE radioactive air handling


Air activation levels over 3 years as measured in chimney

April to December

Modification of the Ventilation System

- Why modify the ventilation system after 14 years of operation? (during 2007/2008 shutdown)
 - Increase delay time of activated air in target area
 - Sealing of holes to reduce air flow out of target

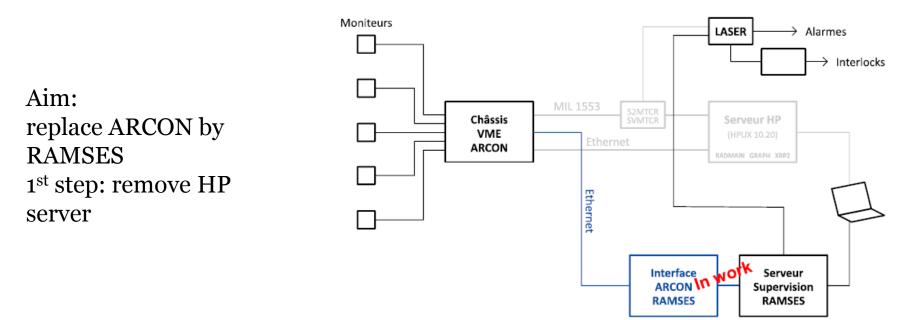

Results from 2008

		Release of short-lived gases		
Year	P on target (10 ¹⁹)	Measurement (TBq)	Prediction (TBq/10 ²⁰ p)	Released radioactivity (µSvy-1)
2004	7.78	5.52	7.1	1.6
2005	9.67	6.76	7.0	2.0
2006	7.9	7.03	8.9	2.04
2007	6.3	11.1	17.6	3.23
2008	5.3	5.48	10.3	1.6

- 2µA was available for each separator as from July 2008
 - Tests showed that at 2μA, a maximum of 520kBqm⁻³ was being released
 - No gate monitor alarms triggered
- The reason for the increase in 2007 is not completely understood but probably due to the opening of cable passages between the hall and the target area.

Recommendations

- All activities exceeding operational limits as defined at ISOLDE start in 1993 need Radiation Safety and Radiation Protection assessment and approval. Same principle will be applied to other CERN installations
- Radiation Safety and Radiation Protection studies similar to SPS, CNGS and LHC are required as part of HIE approval procedure



Status of RAMSES and ARCON radiation monitoring system

DG-SCR operates two different radiation monitoring and alarm systems:

• ARCON for the injector chain and experimental areas

• RAMSES for LHC, CNGS, CTF3

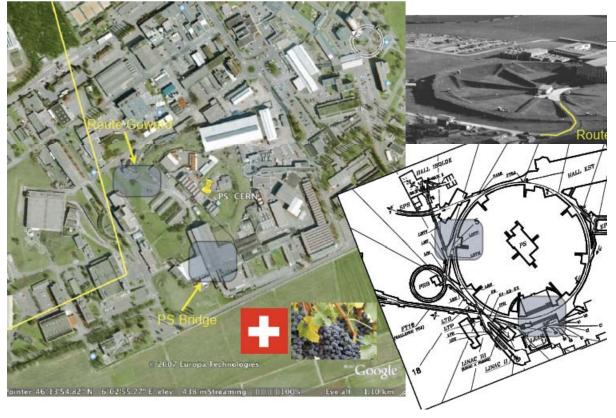
Status of RAMSES and ARCON radiation monitoring system

- Extension of RAMSES to whole LHC injector chain on good way, Finance Committee approved to increase the envelope of the initial contract
- HP server supervision replacement close to be finalised

Recommendations:

- Clear procedures to be prepared for operation to prepare for ARCON failures
- Clarify fast access to RAMSES from CCC

Supercycles in the SPS – Towards 'full' ppm operation


- Remove link between supercycle and cycle to increase flexibility
- Ensure cycles can be interchanged using a standard setting at start and end
 - The ring will use a fixed base momentum of 13.5 GeV
 - Injection no longer coincides with time = 0 for FT and CNGS beams
 - TT10 PC functions must be started in advance (~2000 ms); PC crate needs to be triggered on different timing event
 - Machine offset between CPS and SPS will change by -200 ms
- No special recommendations

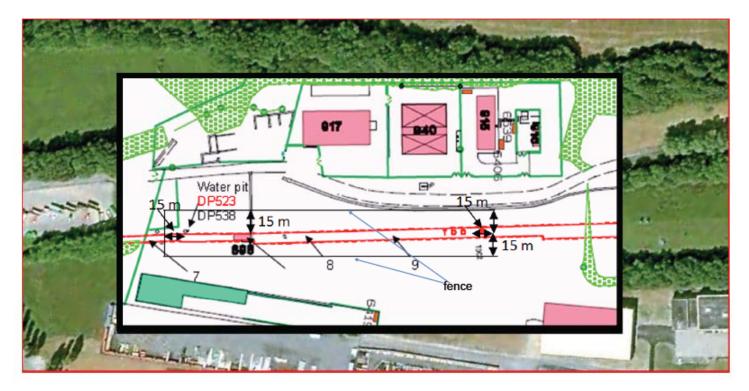
Where do we stand 3 years after ...

PS radiation issue of Route Goward

Tunnel built at ground level, not enough shielding in some locations

50% irradiation from CT extraction. ~ 0% with MTE 50% directly from beam injection

Improvements:


MTE extraction LHC BLMs installed Matching PSB-BT-BTP-PS study Trajectory study Alignment measurements BT-BTP-PS

To be done: MC simulation of injection loss Alignment BT-BTP-PS

Where do we stand 3 years after ... Surface area on top of TT20

Area on top of TT20 needs to be classified as radiation area

- · Fence around surface area located on top of TT20 beam line encloses :
 - Water pit DP 523
 - · First and second series of splitters
 - Building 898 (ventilation building with direct connection to beam line)

Where do we stand 3 years after Conclusions

- Recommendations status:
 - MTE commissioning will end in 2009: less radiation @ route Goward, no radiation in SS31, losses concentrated at extraction septum
 - radiation @ route Goward: injection studies ongoing
 - No additional air activation studies for TT10 in 2008 due to other priorities. Postponed to 2009
 - Surface area on top of TT20 has been fenced
 - TT10 PGC1 shaft shielding has been renovated
 - Air sniffing system in BA80 installation started but, due to other priorities, work will be finished in 2009
 - SPS-BLM readout device for residual dose rate measurements testing started
- Operation always attentive to reduce as much as possible beam losses
- Other steps taken to reduce/understand losses: machine alignment, renovation of beam loss monitor system, cross-check between radiation survey and BLMs data...

Where do we stand 3 years after - Recommendations

- Perform BT/BTP line alignment as early as possible (+BTM and BTY alignment)
- Install remote TCC2 device for visual inspections and dose rate measurements
- Publish BLRWG report and revive BLRWG (or similar) for regular inspection of beam and radiation conditions