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= Engineering Department

'First conceptual studies started in 2008.

Phase Il Design Strategy

Keep Phase | design baseline (moveable jaws with 5 motors , i.e. 5
independent D.o.F. in a vacuum tank).

- Extended re-use of Phase | motorization, electronics and ancillary
equipments (Supports, Cabling, Water distribution circuits, Plug-ins...).

» Focus on the re-design of the jaw assembly according to new
requirements (see R. Assmann’s talk).

. Design optimization of some mechanical components (e.g. mobile
tables for the actuation system).

. Rely on international collaborations for material R&D with
European Institutes (EPFL, ARC, PoliTo, Kurchatov Inst. in the
frame of FP7) and industries (Plansee AG ...)

A. Bertarelli, A. Dallocchio LHC Collimation Phase II — ConceptuaI_Review
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N Phase Il Design Features

| Jaw design

= Modular design (a common baseline for the jaw assembly
allows the use of alternative materials for the jaw).

= Back-stiffener concept to allow maximum geometrical stability
(improves collimator efficiency).

= Adjustable system to allow jaw flatness control and
compensate gravity sag (2 versions being studied ...)

= Optimized internal cooling circuit to absorb higher heat-loads.
= |Integrated BPMs to minimize set-up time.

= Jaw materials (goals)
= Tailored electrical conductivity to improve RF stability.
= High thermo-mechanical stability and robustness.
= Higher density (high-Z) to improve collimation efficiency.
= Strong resistance to particle radiation.

A. Bertarelli, A. Dallocchio LHC Collimation Phase II — Con
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Phase Il Collimator Materials
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Phase Il Collimator Materials

Diamond-metal composites are advanced thermal management materials
usuaIIy obtained by liquid metal pressure infiltration or hot pressmg
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Phase Il Collimator Materials

Diamond-metal composites combine excellent Thermal conductivity (higher
than Cu) with particularly low CTE ...

Coefficient of Thermal
Expansion

(factor 2+3 less than Cu)

CTE, ppm/K

60 80

Temperature, °C

\/

Thermal conductivity

Thermal Conductivity, W/m.K

(factor 1.5+2 more than
Cu)

40 60 120
Temperature, °C

Source: Plansee AG — Reutte (AT)
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N Phase Il Collimator Materials
Radiation hardness is a critical aspect for the lifetime of C-C jaws used
for Phase | collimators ...
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Engincering Deparimen Phase Il Design options

...depending on RF and cleaning efficiency specifications...

Possible alternative solutions for TCSM
Equipped Jaw
|

Ceramic absorber with metallic Solid metal jaw Ce_ramic support with thin
(conductor) support foil absorber (conductor)

Jaw absorber: Ceramic \

1-100 Qm resistivity (SiC . Ceramic support

Few cm long tiles Y (51C) / Metal-based jaw \ P.P .

~10 mm thick 1. Low cc_)nFiuctmg matc_enal
, - 1.2mlong 2. Monolithic or brush-like

~1 mm gap between tiles 2. Very good conductor on surface

CTE ~5 ppm (e.g. Cu coating)

Bulk material should have low CTE

(Metal — Diamond?) / Thin-metal foil

Jaw metal support
1. Bonded to support

Good conductor 2. ~20-50 pm thick
1.2 m long monolithic
CTE matching ceramic’s? Jaw Cooler & Pipes

Cooler Length ~300+500mm
Brazed to metal support

Continuous pipes brazed Embedded continuous Machined Circuit with Machined circuit sealed
to Jaw cooler (as Phase I) pipes (back-casting) brazed cover during casting
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Phase 11 Design Baseline

Preliminary design is based on the concept of a rigid back stiffener remaining at almost
uniform temperature and ensuring high geometrical stability to the jaw surface under
thermal load.

Fine adjustment system:

Equipped jaw + Cooler Minimize mechanical tolerances

Compensate deformation due to gravity
Limit thermal deflection of the jaw

|
/\
Back-stiffener



Engineering Department

Phase 11 Design baseline (v1)

Modular concept to fit in alternativ

EQUIPPED JAW

BRAZED COOLER

FINE ADJUSTMENT

SYSTEM BACK-

STIFFENER

A. Bertarelli, A. Dallocchio
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Equipped Jaw (v1)

18t version of equipped jaw (1 adjustable support) ... SiC absorber
shown ...

Ceramic tiles SiC brazed on
metal (conductive) support
...Cu-CD is favorite candidate |

| ""*‘ Machined cooling circuit
‘ U with brazed cover.

Fine adjustment system
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Design Baseline (v2)

Alternative design of equipped jaw based on 2 intermediate adjustable
supports ...

Fine adjustment

system - Mo Back - Stiffener

Cut jaw: each piece is ‘
independently supported
on the back stiffener.

Enhanced geometrical |
stability

\| RF contacts ensure
| electrical conductivity
between jaw pieces
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Design Baseline (v2)

o s e i e

3-pieces jaw
independently cooled by
three separate brazed
coolers

Jaw - Stiffener

- Machine cooling circuit
Back - Stiffener with brazed covers
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Alternative Materials

Cu Inox
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Thermo-mechanical analyses

Preliminary analyses show good geometrical stability.

Thermal deflection of Glidcop jaw with “design v.2” stays within 50um with an
active length of 1m (Steady-state case).

ifa Temperature distribution (half-symmetry)
‘= - N Temperature distribution
- W (1 hr Beam lifetime (7) — 0.8x10"1 p/s
equivalent to ~20kW — Steady state)
Max AT
~50°C on
Glidcop jaw

Thermal deflection
Max deflection (Steady-state 1 hr 7)
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Thermo-mechanical analyses

L

Preliminary simulations of direct 7 TeV bec
results (no melting as opposed to Glidcop
codes + dynamic characterization of the
mandatory (See |. Efthymiopoulos talk)

Temperature = Maximum Principal Stress =
Liiﬁ:olemperature Glldcop Jaw Type: Maximurm F‘ri:cipal Stress SIC JaW
I Urit: MPa . . .
P12 61571 Temperature TR Maximum principal
[ 250t M distribution in case of | stress distribution in

9279.9 2505.4 Max
| e Asynchronous Beam 2156.9 case of Asynchronous
| e if i Dump at 7 TeV Ly Beam Dump at 7 TeV
|| 57535 T L 1111.4
— 50482 762,85 §
— 4343
[ e Max Pressure e
o e increase of a1

is21.9 cooling water: 63123 Min Max Pressure
B increase of

| ~60bar cooling water:

~25bar

A. Bertarelli, A. Dallocchio LHC Collimati
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Thermo-mechanical analyses

Preliminary simulations of direct 7 TeV beam impact (200 ns): SiC gives promising
results (no melting as opposed to Glidcop jaw). Simulations with hydrodynamic
codes + dynamic characterization of the materials + HiRadMat tests are

mandatory (See |. Efthymiopoulos talk).

SiC

Melted region P
(grey) y \ [ Affected region

5 num . £ I (grey):
¥ | Thermal stresses
: \ 4 exceeding tensile
. strength

5th D.o.F. motor allows to move all the
~vacuum tank by £ 10mm.
Collimators should withstand up to 5
accidents.
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Cooler prototype

Using high Z-material leads to higher energy deposition (up to a factor
5 increase w.r.t. Phase |). Higher cooling capacity is essential to
ensure geometrical stability...

Two prototypes including machined circuit,
brazed cover and jaw mock-up have been
produced and successfully tested...

I

T .
21ELH| 246LH

T 2.5
OFE ~ 34ELHM
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Cooler prototype

The goal is to define a complete and standardized procedure
according to UHV specs. in order to qualify the design.

Jaw mock-up | TN : _ Q /,
\\ ;

| Test successfully performed: \

*Ultrasound cartography of the brazing surfaces MaChmed circuit

*Pressure test (100 bar over 1h)
*Final He leak detection.
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| Cooler prototype

i

The goal is to define a complete an
according to UHV specs. in order {c

% AMP dB

120 158 |
110 4 F0.82 |
100 -0.00

a0 -

30 4 F-10.46

20 - F-13.98

10 4 F-20.00
o- L -infimi

Ultrasound Cartography of Brazed Joint:
*No relevant defects found on either prototypes
*Brazing is leak-tight

A. Bertarelli, A. Dallocchio LHC
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Operational efficiency

Integration of BPMs strongly influences the design of the whole system...
Reduce set-up time to ~1 min. Only way to set-up at high intensity and
energies.

BPM pick-ups

BPM cables and
electrical
connections
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BPM functional prototype

Mgt-i.v.a_tion: BPMs integration strongly influences the design of the whole
system. A rapid testing in the SPS of the BPM embedded system is mandatory
to validate the concept.

: e
i A 1. . —
‘."&I.F
o BPM cables
OBJECTIVES:
q E m " Lab. tests to start April/ May 2009

" Beam tests in SPS during 2010 run
(installation dates to be determined ...)
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Mechanical Optimization

New stiffer design has been prototyped and is undergoing endurance
tests ....

Increased
stiffness

i

Linear ball
bearings + shaft
guiding
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Cryogenic Collimators

S\ Preliminary ideas at CERN ...

WARM LHC Cold-warm t.ransition Warm Actuation
developed for FP420 project. system placed
(Th. Renaglia EN-MME) outside the

cryostat

Possible Layout of a Cryogenic
collimator @ ~50K: moveable
beam pipe with integrated
collimator jaw

(R. Perret EN-MME)




et Planning and Resources

. z-':;F""'_ -
Task Mame Duration 2008 2009 2010 2011 2012 2013 2014
1zt Half 2nd Half 1stHalf | 2nd Half 1zt Half 2nd Half 13t Half 2nd Half 1=t Half 2nd Halt 1zt Half 2nd Half 1zt Half z
Ctr 1 [Gtr 2 [ Gr 3 [Grte 4 [Gir 1[G 2 [ Gt 3 (Gt & Oty 1 [Gtr 2 [ Gt 5[ Gt 4 | Otr 1[Gt 2 [Ctr 5[ Gtr 4 [Gtr 1 [Gtr 2 [ Gr 3 [@tr 4 (G 1[Gt 2| Gtr 5 [Cr 4 [Ge 1 [t 2 (Gt
= Phasell Collimation 1420 days? : 01/07/08 - 30/09/08
Conceptual Review 0 days “2’?4
= Phasell Collimators 1420 days? i :
Phasell - Engineering, & Pre-study 18 maons? |’
Phase Il - Design, Drafting & Material | 12 mans?
Phasell - Prototyping & Testing 14 mons |’
Phase Il - Materials demostrators for b 0 days
Phase Il - Prototype(s) Ready for HiRz 0 days i
Phase Il collimators - Construction 0 days i
Phasell - Production& Cluality control 24 maong |
Phasell - Installation B maons
El Cryogenic Collimators 700 days?
Toryo - Engfneermg & .F're—stud},r 12 mons | Expected insta"ation
Teryo - Design & Drafting 9 mons .
Teryo - Prototyping & Testing 12 mons? )’ durlng LHC Phase I
Teryo - Production 15 mons upgrade Shutdown
Teryo - Installation 3 mons|




Engineering Department

Conclusions

- L\ CERN design for Phase Il collimators is an evolution of Phase I.
'Extensive redesign has been carried out on jaw assemblies to
respond to new requirements.

= Preliminary jaw design is based on a modular concept, allowing
different material options to be adopted.

“ BPMs are integrated to reduce set-up time. Only way for set-up at
high energies and intensities.

® Particular care devoted to flatness control, minimization of induced
deflection, heat evacuation.

“ Demonstrators are being built/tested to validate most critical
aspects. Rapid tests of BPM demonstrator in SPS is fundamental.

“ |deas for possible solutions for Cryogenic collimators are being
assessed within Phase Il Design Team. Timing hard to estimate ...

“ Engineering, design and manufacturing of Phase |l and Cryogenic
collimators at CERN (EN-MME) is conceivable provided R&D effort
is maintained (no contingency planning) and adequate resources

are allocated.
A. Bertarelli, A. Dallocchio LHC Collimation Phase II — Conceptual Review
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