

Medical applications of accelerators and linked detector technologies

Andreas Peters 1st DITANET School on Beam Diagnostics, London, April 2nd, 2009

HIT Betriebs GmbH am Universitätsklinikum Heidelberg

http://www.hit-centrum.de

Outline

- Introduction: historical developments of accelerators and their use for medical applications: tumour treatment from X-rays to particle therapy
- Underlying physics and biology of particle therapy; implications on the needed beam parameters
- Accelerator technologies used for particle therapy so far: cyclotrons and synchrotrons
- Particle therapy facilities worldwide: an overview and some examples in detail
- Use of common detector systems for accelerator beam diagnostics and dose monitoring for the treatment
- Outlook to new accelerator concepts FFAGs, laser plasma accelerators, dielectric wall accelerators

An introduction

about the historical developments of accelerators and their use for medical applications: tumour treatment from X-rays to particle therapy

- 1895 *Wilhelm Conrad Röntgen* (1845 1923) discovers the X-rays on 8th November at the University in Würzburg
- 1896 On 23rd January Röntgen announced his discovery and demonstrated the new kind of radiation by a photograph of the hand of his colleague *Albert von Kolliker*
- 1897 First treatments of tissue with X-rays by Leopold Freund at University in Vienna
- 1901 Physics Nobel prize for W.C. Röntgen

- 1899 First X-ray treatment of carcinoma in Sweden by *Stenbeck* and *Sjögren*
- 1906 Vinzenz Czerny founded the "Institute for Experimental Cancer research" in Heidelberg – the first of its kind
- 1913/4 Invention of part- and full-rotation radiation instrumentation
- 1920's Industrially manufactured X-ray apparatus; example from Reiniger-Gebbert & Schall AG (later: Siemens), Erlangen; 1922) with a high-voltage of 150 kV – without shielding!
- 1930 First linear accelerator principle invented by *Rolf Wideroe*
- 1949 *Newberry* developed first linear accelerator for therapy in England

1950's Development of compact linear accelerators byand Siemens, Varian, Elekta and other companies -later with energies up to around 25 MeV (and above)

Principle layout of modern linac for therapy

ONCOR from Siemens

- 1929 Invention of cyclotron by Ernest Lawrence
- 1930's Experimental neutron therapy
- 1946 R. R. Wilson proposed proton & ion therapy
- 1950's Proton therapy, LBL Berkeley (184" cyclotron)
- 1945 Edwin Mattison McMillan at University of California and Vladimir Iosifovich Veksler (Soviet Union) invented the synchrotron principle
- 1975 Begin of carbon therapy in Bevalac synchrotron (Berkeley)

DITANET School, 2nd April 2009

Description of the underlying physics and biology of particle therapy; Implications on the requirements for the needed beam parameters: energy, intensity, focus, beam structure

Physics and Biology of radiation therapy

Basic effect of radiation on cells: energy loss in matter leads to defects in the DNA – double strand breaks of the DNA kills the cell. Tumor cells have less repair capabilities than normal cells.

DITANET

Physics and Biology of radiation therapy

Low LET

Homogeneous deposition of dose

High LET

Local deposition of high doses

LET: Linear energy transfer

Physics and Biology of radiation therapy

Implications on the needed beam energy

Range of different beams in water

30 cm range define the end energy for the accelerator design: $p \rightarrow 220 \text{ MeV}$ $C \rightarrow$ 430 MeV/u

Development in the 90ies: Scanning techniques

a) Protons (Pedroni et al., PSI): spot scanning gantry (1D magnetic pencil beam scanning) plus passive range stacking (digital range shifter)

b) Ions (Haberer et al.):
raster scanning (2D magnetic pencil beam scanning) plus active range stacking (spot size, intensity) in the accelerator

Intensity-Controlled Rasterscan Technique, Haberer et al., GSI, NIM A, 1993

DITANET School, 2nd April 2009

"Active" dose application needs a pencil beam with adjustable focus

...and DC like beam structure !

Alternative: High repetitive pulsed beam with highly stable intensity

Treatment time per voxel ~ some ms

DITANET School, 2nd April 2009

Implications on the needed beam intensity

Beam scanning delivers doses from mGy to Gy per voxel (range: 1000).

➤The dose directly depends on the LET, which varies by a factor 3 within energy range needed to cover ranges in tissue from 2 - 30 cm in water.

>Theoretically an intensity variation of 3000 is required. For carbon this would be $(2 - 6) \times 10^9$ per second.

> Practically the injector is not able to produce intensities above 10⁹ carbon ions per injection pulse for the synchrotron and these very high intensity levels are rarely needed in clinically used treatment plans. > Therefore (at HIT) the intensity library for carbon covers 2 x 10⁶ up to 5 x 10⁸ ions per second spread over 15 steps in order to allow for maximum scanning speed, respectively minimum treatment time. > Protons have less than 50% of the relative biological efficiency compared to carbon and the LET-values are 18-times lower. Consequently the proton intensity settings are 40-times higher than the carbon settings → 8 x 10⁷ up to 2 x 10¹⁰ ions per second

Accelerator technologies used for particle therapy so far: Cyclotrons and synchrotrons

Cyclotrons – principle working scheme

Diagram of cyclotron operation from Lawrence's 1934 patent.

Cyclotrons – principle working scheme

 $f_c = \frac{Bq}{\pi m}$

Cyclotron frequency; needs modification in relativistic case!

$$f = f_c \sqrt{1 - \left(\frac{v}{c}\right)^2}$$

Cyclotrons – principle working scheme

For higher energies (needed for PT) the isochronous cyclotron type is in use with increasing $B(r) \rightarrow axial$ defocusing must be compensated by "strong focusing", which is realized by sectoring the magnet and resulting edge focusing

Cyclotrons – example

IBA PT proton cyclotron E = 230 MeV $B_{max} = 3 T$ (Saturated field) $\emptyset = 4 \text{ m}$ 1st installation at MGH, Boston/USA 10 more worldwide

Synchrotrons – principle layout

Injector linac with energies of some MeV/u: \rightarrow v ~ 10% c

Magnetic rigidity: $p \rightarrow 2,26 \text{ Tm}$ $C \rightarrow 6,6 \text{ Tm}$

With ~ 50% fill factor for dipoles:

 $p \rightarrow Ø_{Sync} \sim 6 m$

 $C \rightarrow Ø_{Sync} \sim 18 \text{ m}$

Synchrotrons – cyclic operation mode

Cyclotrons and Synchrotrons – a comparison

The pulsed beam of fixed energy is always present – it needs absorbers SYNCHROTRONS

A cycling beam of variable energy has 1-2 second gaps

Persisting cw beam

Discontinuous "dc beam"

Active energy variation

Passive energy variation (degrader \rightarrow high local beam loss!)

Particle therapy facilities worldwide - an overview and some examples in detail: PSI/Switzerland, LomaLinda/USA, HIMAC/Japan, HIT/Heidelberg

Particle Therapy Facilities - worldwide

DITANET School, 2nd April 2009

Heidelberger Ionenstrahl-Therapiezentru

Particle Therapy Facilities – PSI/Switzerland

Gantry 1 for proton treatment with 1D spot scanning technique 590 MeV proton cyclotron for basic research; therapy beam slowed down by large degrader system since 1984 (Set-up with Gantry: 1996 – 2005)

Particle Therapy Facilities – PSI/Switzerland

PROSCAN facility as it looks today (Gantry 2 still under commissioning) 5,500 patients treated since 2008 (mainly eyes)

DITANET School, 2nd April 2009

Particle Therapy Facilities – PSI/Switzerland

Control Room

Heidelberger Ionenstrahl-Therapiezentru

ACCEL

Gantry 2

New Superconducting Cyclotron:

B = 4.5 TØ = 3 m M = 80 tons E = 250 MeV

DITANET School, 2nd April 2009

Particle Therapy Facilities – Loma Linda/USA

7m synchrotron

13,500 patients treated

1st hospital based proton therapy centre (since 1990) using a synchrotron – designed and commissioned by Fermilab 2005: 160 sessions/day

Stationary Beam

Gantries

Particle Therapy Facilities – HIMAC/Japan

The Heavy Ion Medical Accelerator of NIRS (since 1994)

Two identical 800 MeV/u synchrotrons for ions up to Argon; mainly Carbon is used

4,500 patients treated

Particle Therapy Facilities – HIMAC/Japan

Development programme of advanced techniques at NIRS/HIMAC

(NIRS: National Institute of Radiological Sciences)

HIMAC control modification

Dynamic intensity control system

New treatment room

3D scanning irradiation

●Fast scanning magnet
 ●Precise monitoring of dose and position⇔ control system
 ● Positioning system Treatment planning system

High-accurate therapy through 3D beam-scanning synchronized with target movement.

Carbon beam -

1

Development of rotating gantry

- High-field dipole magnet
- Dose-uniformity verification
- Rotation-accuracy verification
- Optimization of beam optics
- Downsizing the gantry

For one-day treatment with flexible irradiation from any desired angle.

HIT concept and layout is based on experience from GSI; 448 patients were treated with carbon beams from 1997 – 2008 using raster scanning technique

Start of patient treatment scheduled in Q4/2009

At present debugging and stabilization of treatment application system and IT workflow are underway

Compact building (60 x 70 m², 3 levels), directly linked to the "Head Clinics" of the University Hospital

- lons
- Energies (MeV/u) (255 steps)
- Beam spot size
 (4 steps)

- p ³He²⁺ ¹²C⁶ ¹⁶O⁸⁺ 48 72 88 102 -220 -330 -430 -430
- 4 10 mm (2d-gaussian)

 Treatment caves: 3 (2 horizontal, 1 iso-centric gantry)

• QA and Research: 1 (1 horizontal)

Injector: 2 ECR ion sources (8 keV/u) and following RFQ and IH-DTL linac \rightarrow 7 MeV/u

Synchrotron

High energy beam transport (HEBT)

DITANET School, 2nd April 2009

Heidelberger Ionenstrahl-Therapiezentrum

Worldwide first isocentric ion gantry – including a scanning system: Ø = 13m 25m long **600** tons overall weight

0.5 mm max. deformation

Patient Gantry Room

A short excursion: Use of common detector systems for accelerator beam diagnostics and dose monitoring for the treatment - high-precision ionization chambers (IC) and multi-wire proportional chambers (MWPC); **Examples from PSI and HIT**

Detectors for beam monitoring

All beam diagnostics equipment used to monitor the beam intensity and position / profiles (HEBT!) is based on energy loss in matter (mainly gases) \rightarrow electronic stopping:

Detectors for beam monitoring - intensity

Principle layout (left figure) and example implementation (at GSI) with used parameters to work in the proportional regime

active surface	$64 imes 64 ext{ mm}^2$
active length	$5 \mathrm{mm}$
electrode material	$1.5 \ \mu m$ Mylar
coating	$100 \ \mu g/cm^2 \ silver$
gas (flowing)	$80 \% \text{Ar} + 20 \% \text{CO}_2$
pressure	1 bar
voltage	$500 \dots 2000 V$

Detectors for beam monitoring - profile

Principle layout of a Multi-wire proportional chamber (MWPC)

Electric field close to the anode wires with region of amplification (up to 10⁴ typ.)

Detectors for beam monitoring - examples

PSI: Ionisation chamber used as a halo monitor in the high intensity region

IC folded around bellow

Detectors for beam monitoring - examples

Heidelberger lonenstrahl-Therapiezentru

IC part

Detectors for beam monitoring - examples

Detectors for treatment monitoring

Same technique for online monitoring of treatment in front of the patient position

Detectors for treatment monitoring

High dynamic range:

- 10⁶ 10¹⁰ particles / s
- 48 MeV (p) 430 MeV/u (C)
 Detector area: 20 x 20 cm²
 Overall intensity measurement precision: < 5 %

Verification film showing scanner system performance during commissioning (2008)

C, 430 MeV/u, isocentre, no position feedback, 7x8 cm, dose flatness ±2 %

Outlook to new accelerator concepts proposed for particle therapy: FFAGs, laser plasma accelerators, dielectric wall accelerators and others

New accelerator concepts - FFAGs

Idea:

Simplify control and operation, no synchronization necessary between Bfield and RF

...but no savings in space!

New accelerator concepts - FFAGs

Fast acceleration

Compact footprint

Magnet aperture must accept large momentum range

Variable energy extraction?

Possible very high rep rate

Much world wide interest.

Demo machines in early operation, construction & design

Further projects: EMMA (GB), RACCAM (F) and others

New concepts – laser plasma accelerators

New concepts – Dielectric wall accelerators

G. Caporaso et al, LLNL

250 MeV protons in 2.5 m?

Pulse-to-pulse energy & intensity variation "Hoping to build a full-scale prototype soon"

Medical applications of accelerators and linked detector technologies

Thank you for your attention

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Medical applications of accelerators and linked detector technologies

Useful links to get information in this field:

- [1] <u>http://www.jacow.org</u> → Database of all particle accelerator conferences (PAC, EPAC, DIPAC, CYCLOTRONE, …)
- [2] <u>http://ptcog.web.psi.ch/</u> → Webpage of "Particle Therapy Co-Operative Group", the network of all institutes in the field
- [3] <u>http://www.roentgen-museum.de/</u> → German museum on the work of Conrad Röntgen and the history of X-ray diagnostics and X-ray therapy
- [4] Webpages of companies: <u>http://www.medical.siemens.com/,</u> <u>http://www.varian.com/, http://www.iba-worldwide.com/,</u> <u>http://global.mitsubishielectric.com/bu/particlebeam/index.html,</u> <u>http://www.elekta.com</u> (list not complete)
- [5] <u>http://www.wikipedia.org/</u> → overall information on people and history

