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Outline
• Introduction: historical developments of accelerators and 

their use for medical applications: tumour treatment from 
X-rays to particle therapy

• Underlying physics and biology of particle therapy; 
implications on the needed beam parameters

• Accelerator technologies used for particle therapy so far: 
cyclotrons and synchrotrons

• Particle therapy facilities worldwide: an overview and 
some examples in detail

• Use of common detector systems for accelerator beam 
diagnostics and dose monitoring for the treatment

• Outlook to new accelerator concepts FFAGs, laser 
plasma accelerators, dielectric wall accelerators
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An introduction
about the historical developments of 

accelerators and their use for medical 
applications: tumour treatment from    

X-rays to particle therapy
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History of medical applications of accelerators
1895 Wilhelm Conrad Röntgen (1845 – 1923)      

discovers the X-rays on 8th November 
at the University in Würzburg

1896 On 23rd January Röntgen announced 
his discovery and demonstrated the new 
kind of radiation by a photograph of the 
hand of his colleague Albert von Kolliker

1897 First treatments of tissue with X-rays by 
Leopold Freund at University in Vienna

1901 Physics Nobel prize for W.C. Röntgen

Schematics of 
an X-ray tube –
an “electrostatic 
accelerator”
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History of medical applications of accelerators
1899 First X-ray treatment of carcinoma in 

Sweden by Stenbeck and Sjögren
1906 Vinzenz Czerny founded the “Institute 

for Experimental Cancer research” in 
Heidelberg – the first of its kind

1913/4 Invention of part- and full-rotation 
radiation instrumentation

1920´s Industrially manufactured X-ray 
apparatus; example from Reiniger-
Gebbert & Schall AG (later: Siemens), 
Erlangen; 1922) with a high-voltage of 
150 kV – without shielding!

1930 First linear accelerator principle 
invented by Rolf Wideroe

1949 Newberry developed first linear accele-
rator for therapy in England
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History of medical applications of accelerators
1950´s Development of compact linear accelerators by
and Siemens, Varian, Elekta and other companies -
later with energies up to around 25 MeV (and above) 

Principle layout of modern linac for therapy
ONCOR from 

Siemens
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History of medical applications of accelerators
1929 Invention of cyclotron by Ernest 

Lawrence
1930´s Experimental neutron therapy
1946 R. R. Wilson proposed proton 

& ion therapy
1950's Proton therapy, LBL Berkeley 

(184” cyclotron)

1945 Edwin Mattison McMillan at 
University of California and  
Vladimir Iosifovich Veksler
(Soviet Union) invented the 
synchrotron principle

1975 Begin of carbon therapy in 
Bevalac synchrotron (Berkeley)
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Description of the underlying physics 
and biology of particle therapy; 

Implications on the requirements for the 
needed beam parameters: energy, 

intensity, focus, beam structure
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Physics and Biology of radiation therapy
Basic effect of radiation 
on cells: energy loss in 
matter leads to defects in 
the DNA – double strand 
breaks of the DNA kills 
the cell. Tumor cells have 
less repair capabilities 
than normal cells.

microscopic dose 
distributions
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Physics and Biology of radiation therapy

High LET

Local deposition of high 
doses

Low LET

Homogeneous deposition 
of dose

p

C
LET: Linear energy transfer
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Physics and Biology of radiation therapy

Depth 
profile of 
relative 
dose 
deposition 
from 
different 
beams in 
water
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Implications on the needed beam energy

Range of  
different 
beams in 
water

30 cm range 
define the 
end energy 
for the 
accelerator 
design:
p 220 MeV
C 

430 MeV/u
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Implications on beam focus & spill structure
typical set-up
(Tsukuba) Distal edge shaping using a bolus

pulls dose back into healthy tissue

“Passive” dose application needs 
only widened beam focus, but …
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Implications on beam focus & spill structure
Development in the 90ies:
Scanning techniques

a) Protons (Pedroni et al., PSI): 
spot scanning gantry (1D 
magnetic pencil beam 
scanning) plus                                     
passive range stacking   
(digital range shifter)

b) Ions (Haberer et al.):             
raster scanning (2D magnetic 
pencil beam scanning) plus                                    
active range stacking         
(spot size, intensity)                
in the accelerator
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Implications on beam focus & spill structure
“Active” dose 
application needs 
a pencil beam with 
adjustable focus

…and DC like 
beam structure !

Alternative:
High repetitive 
pulsed beam with 
highly stable 
intensity

Treatment time per voxel ~ some ms
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Implications on beam focus & spill structure

Straggling effects 
must be taken into 
account!

(vacuum window, 
dose monitoring 
system,…) focus f(E)
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Implications on beam focus & spill structure

Higher local precision 
with carbon for deep-
seated tumour treatment
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Implications on the needed beam intensity
Beam scanning delivers doses from mGy to Gy per voxel (range: 

1000).
The dose directly depends on the LET, which varies by a factor 3

within energy range needed to cover ranges in tissue from 2 - 30 cm in 
water.

Theoretically an intensity variation of 3000 is required. For carbon this 
would be (2 – 6) x 109 per second.

Practically the injector is not able to produce intensities above 109

carbon ions per injection pulse for the synchrotron and these very high 
intensity levels are rarely needed in clinically used treatment plans.

Therefore (at HIT) the intensity library for carbon covers 2 x 106 up to  
5 x 108 ions per second spread over 15 steps in order to allow for 
maximum scanning speed, respectively minimum treatment time.

Protons have less than 50% of the relative biological efficiency
compared to carbon and the LET-values are 18-times lower. 
Consequently the proton intensity settings are 40-times higher than the 
carbon settings 8 x 107 up to 2 x 1010 ions per second
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Accelerator technologies used for 
particle therapy so far:                   

Cyclotrons and synchrotrons
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Cyclotrons – principle working scheme

Diagram of cyclotron operation 
from Lawrence's 1934 patent. 
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Cyclotrons – principle working scheme

Classical cyclotron with 
decreasing field B(r)

Axial focusing

Cyclotron frequency; 
needs modification in 
relativistic case! 
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Cyclotrons – principle working scheme

For higher energies (needed for PT) 
the isochronous cyclotron type is in 
use with increasing B(r) axial 
defocusing must be compensated by 
“strong focusing”, which is realized by 
sectoring the magnet and resulting 
edge focusing
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Cyclotrons – example

IBA PT proton 
cyclotron

E = 230 MeV

Bmax = 3 T

(Saturated field)

Ø = 4 m

1st installation at 
MGH, Boston/USA 
10 more worldwide



DITANET School, 2nd April 2009 24

Synchrotrons – principle layout
Injector linac with 
energies of some 
MeV/u:                 

v ~ 10% c

Magnetic rigidity: 
p 2,26 Tm        
C 6,6 Tm

With ~ 50% fill 
factor for dipoles:

p ØSync ~ 6 m

C ØSync ~ 18 m
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Synchrotrons – cyclic operation mode

Theory

Implementation

Hysteresis 
compensation
.

1st HIT 
design
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Cyclotrons and Synchrotrons – a comparison

Persisting cw beam Discontinuous “dc beam”

Passive energy variation Active energy variation 
(degrader high local beam loss!)
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Particle therapy facilities worldwide - an 
overview and some examples in detail: 

PSI/Switzerland, LomaLinda/USA, 
HIMAC/Japan, HIT/Heidelberg
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Particle Therapy Facilities - worldwide

PT centres: a rapid growing market

2008:

70,000 patients

29 centres

Total treated patients

N
o. of active centres
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Particle Therapy Facilities – PSI/Switzerland

Gantry 1 for proton 
treatment with 1D spot 
scanning technique

590 MeV proton cyclotron for basic
research; therapy beam slowed 
down by large degrader system 
since 1984                                       
(Set-up with Gantry: 1996 – 2005) 
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Particle Therapy Facilities – PSI/Switzerland

PROSCAN facility as it looks today 
(Gantry 2 still under commissioning)

5,500 patients 
treated since 2008 
(mainly eyes)
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Particle Therapy Facilities – PSI/Switzerland
Control 
Room

Gantry 2

New Super-
conducting 
Cyclotron:

B = 4.5 T      
Ø = 3 m       
M = 80 tons        
E = 250 MeV
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Particle Therapy Facilities – Loma Linda/USA

1st hospital based proton 
therapy centre (since 1990) 
using a synchrotron –
designed and commissioned 
by Fermilab
2005: 160 sessions/day

13,500 patients treated
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Particle Therapy Facilities – HIMAC/Japan

The Heavy Ion 
Medical Acce-
lerator of NIRS 
(since 1994)

Two identical 800 MeV/u synchro-
trons for ions up to Argon; mainly 
Carbon is used 4,500 patients treated
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Particle Therapy Facilities – HIMAC/Japan

Development 
programme of 
advanced 
techniques at 
NIRS/HIMAC

(NIRS: 
National 
Institute of 
Radiological 
Sciences)
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Particle Therapy Facilities – HIT/Heidelberg

HIT concept and layout is based 
on experience from GSI; 448 
patients were treated with carbon 
beams from 1997 – 2008 using 
raster scanning technique 
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Particle Therapy Facilities – HIT/Heidelberg

Compact building (60 x 70 m2, 
3 levels), directly linked to the 
“Head Clinics” of the            

University Hospital

At present debugging 
and stabilization of 
treatment application 
system and IT work-
flow are underway

Start of patient treatment scheduled 
in Q4/2009
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Particle Therapy Facilities – HIT/Heidelberg

• Ions : p 3He2+             12C6 16O8+

• Energies (MeV/u) : 48  72             88 102     
(255 steps) -220 -330 -430           -430

• Beam spot size :             4 - 10 mm (2d-gaussian)
( 4 steps)

• Treatment caves:             3
(2 horizontal, 1 iso-centric gantry)

• QA and Research: 1  (1 horizontal)
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Particle Therapy Facilities – HIT/Heidelberg
Injector: 2 ECR ion 
sources (8 keV/u) and 
following RFQ and IH-
DTL linac 7 MeV/u
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Particle Therapy Facilities – HIT/Heidelberg

Synchrotron

High energy beam 
transport (HEBT)
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Particle Therapy Facilities – HIT/Heidelberg
H

orizontal Treatm
ent P

lace

Isocentric Rotation +/-100°

Step On Position 650 mm

Pitch max. +/-15°

Roll max. +/-15°
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Particle Therapy Facilities – HIT/Heidelberg
Worldwide 
first 
isocentric
ion gantry –
including a 
scanning 
system:

Ø = 13m  
25m long

600 tons 
overall 
weight

0.5 mm 
max. 
deformation
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Particle Therapy Facilities – HIT/Heidelberg
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A short excursion: Use of common 
detector systems for accelerator beam 
diagnostics and dose monitoring for the 

treatment - high-precision ionization 
chambers (IC) and multi-wire 

proportional chambers (MWPC); 
Examples from PSI and HIT
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Detectors for beam monitoring

Target: 
Charge & Mass (Z, A), 
Density (ρ), Ionization 
Potential (I)

Projectile:
effective charge (Zp), 
Velocity (γ, β)

Bethe Bloch-
Equation:

All beam diagnostics equipment used to monitor the beam 
intensity and position / profiles (HEBT!) is based on energy loss 
in matter (mainly gases) electronic stopping:

Target: C
opper
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Detectors for beam monitoring - intensity

Principle layout (left figure) and 
example implementation (at 
GSI) with used parameters to 
work in the proportional regime
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Detectors for beam monitoring - profile

Principle layout of a Multi-wire 
proportional chamber (MWPC)

Electric field close 
to the anode 
wires with region 
of amplification 
(up to 104 typ.)
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Detectors for beam monitoring - examples

PSI: Ionisation 
chamber used 
as a halo 
monitor in the 
high intensity 
region 

IC folded around 
bellow
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Detectors for beam monitoring - examples
Compact combined detector 
system working at HIT in the 
HEBT; feed-through with 
detector bag – windows to 
vacuum consist of 50 µm 
stainless steel

MWPC part

IC part
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Profile measurements behind synchrotron
(12C6+, 250 MeV/u, 10 mm FWHM)

Profile width of 12C6+ near isocenter position

Profile measurements versus time
(12C6+, 250 MeV/u, with spill pause) Intensity of extracted beam from 

synchrotron („spill” with pauses)

Detectors for beam monitoring - examples

Measurements 
with MWPCs
and ICs at HIT
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Detectors for treatment monitoring
Same technique for online monitoring of 
treatment in front of the patient position
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Detectors for treatment monitoring

Verification film showing scanner system 
performance during commissioning (2008) 

C, 430 MeV/u, isocentre, no position 
feedback, 7x8 cm, dose flatness ±2 %

High dynamic range:
• 106 – 1010 particles / s
• 48 MeV (p) – 430 MeV/u (C)
Detector area: 20 x 20 cm2

Overall intensity measure-
ment precision: < 5 %

Siemens
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Outlook to new accelerator concepts 
proposed for particle therapy:     

FFAGs, laser plasma accelerators, 
dielectric wall accelerators and others
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New accelerator concepts - FFAGs
Idea:

Simplify 
control and 
operation,     
no synchro-
nization
necessary 
between B-
field and RF

…but no 
savings in 
space!
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New accelerator concepts - FFAGs

Further projects: EMMA (GB), RACCAM (F) and others

20 MeV150MeV
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New concepts – laser plasma accelerators
Laser: 50 fs, 50 J (Petawatt!)
I = 1021 W/cm2

1011 protons up to 300 MeV
should be possible

Repetition rate?
Intensity control?
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New concepts – Dielectric wall accelerators
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Thank 
you for 

your 
attention

!

Medical applications of accelerators 
and linked detector technologies
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Medical applications of accelerators 
and linked detector technologies

Useful links to get information in this field:
[1] http://www.jacow.org Database of all particle accelerator 

conferences (PAC, EPAC, DIPAC, CYCLOTRONE, …)
[2] http://ptcog.web.psi.ch/ Webpage of “Particle Therapy Co-

Operative Group“, the network of all institutes in the field
[3] http://www.roentgen-museum.de/ German museum on the work 

of Conrad Röntgen and the history of X-ray diagnostics and X-ray 
therapy

[4] Webpages of companies: http://www.medical.siemens.com/, 
http://www.varian.com/, http://www.iba-worldwide.com/, 
http://global.mitsubishielectric.com/bu/particlebeam/index.html, 
http://www.elekta.com (list not complete)

[5] http://www.wikipedia.org/ overall information on people and 
history

http://www.jacow.org/
http://ptcog.web.psi.ch/
http://www.roentgen-museum.de/
http://www.medical.siemens.com/
http://www.varian.com/
http://www.iba-worldwide.com/
http://global.mitsubishielectric.com/bu/particlebeam/index.html
http://www.elekta.com/
http://www.wikipedia.org/
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