Materials Sciences Division

Institute of Research into the Fundamental Laws of the Universe

The tracking of heavy ions from an « end user » point of view

Antoine Drouart antoine.drouart@cea.fr

Why measure the ion trajectory ?

Information about the reaction process

- \rightarrow angular distributions, velocity
- Identification of the particle
 - \rightarrow curvature radius in a magnetic field gives momentum

Determine the trajectories of ions before the interaction point

 \rightarrow positions + time of flight

Need a transmission detector, with position and time measurement on an event by event basis

Antoine Drouart antoine.drouart@cea.fr

First School on Beam Diagnostics 30.3. - 3.4.2009

irfu

Institute of Research into the Fundamental Laws of the Universe

saclav

Divisio

saclay

Losses & Straggling : estimations

Antoine Drouart antoine.drouart@cea.fr

Antoine Drouart antoine.drouart@cea.fr

First School on Beam Diagnostics 30.3. - 3.4.2009

DITANET

Losses, Straggling and Detection Set-up

	Material	500MeV/u	50MeV/u	5MeV/u
⁴⁰ Ca	2mm BC400 (scintillating plastic)	$\Delta E = 227 MeV$ $\delta E = 0.08 MeV/u$ $\delta \theta = 0.4 mrad$	1385 0.11 3.5	Stopped ! Rg=70µm
	0.2mm Silicon (solid state detector)	42 0.04 0.27	185 0.03 2.4	Stopped ! Rg=46µm
	1cm Ar at 1bar (gas detector)	13 0.023 0.17	57.8 0.01 1.5	Stopped ! Rg=7mm
	10cm C ₄ H ₁₀ at 10mbar (low pressure detector)	0.29 0.003 0.014	1.28 0.002 0.11	6.02 0.002 1.14
	1µm Mylar [©] foil (window)	0.14 0.002 0.01	0.64 .001 0.10	2.9 0.001 0.93
	0.2µm carbon foil (emissive foil)	0.02 0.0008 0.004	0.087 0.0006 0.035	0.39 0.0005 0.34

Tool : LISE++ code by O. Tarasov and D. Bazin

irfu

saclay

aws of the Universe

Relativistic regime : 500MeV/u Diamond tracking for R³B @ FAIR (2013+)

erials Sciences Division Sources: R.Gernhäuser (TU-München)

DITANET

saclay

heavy ions with ~700MeV/u

Measurement of all kinematic variables in a HI reaction

High resolution tracking in the super FRS, Different tasks: irfu radiation hard (SFRS) 10⁶ cm⁻¹ s⁻¹ 2 x TOF (SFRS – target) (reaction products) e.

Short characteristics of CVDdiamond detectors

Diamond as a detector material

- low dielectric constant
- low capacitance
- low noise
- good heat conductivity
 - (5 x higher than Cu)
- large band gap of 5.5 eV
- small signal (< half of a Si of similar size)
- high charge carrier velocity saturation
- fast pulse response time
- Diamond Crystal production

chemical vapour deposition (CVD)

- commercial production
- polycrystalline diamonds (PCD)
 - thickness 0.5-500mm
 - max size ~ 5x5cm2
 - price ? (100 euro/det.)
- single crystal diamond (SCD)
 - smaller (5x5 mm2)
 - better performance (energy resolution)
 - more expensive (5xPCD)

Source: M. Gorska (GSI)

Antoine Drouart antoine.drouart@cea.fr

Fig. 1. A schematic view of a diamond detector.

Diamond detectors performance

- very fast timing
 - pulse risetime: 200 ps width: 2ns (PCD) 5ns (SCD)
 - operating voltage 1 V/μm
- radiation hardness

-Tests with $2x10^{15}$ p/cm² did not show any significant deterioration of a sig./noise

-pumping effect (PCD) : improvement with increasing dose

• position resolution

below 10 μ m can be achieved with strip detectors X and Y

efficiency

70%PCD-100% SCD

Diamonds as TOF detectors

tests with 1GeV/u U beam resulted in TOF of σ =20 ps

irfu

œ

Current developments : Larger Area Detectors

4 prototypes produced **2** operational lithography under control

Frontside: 128 strips 170 μm wide 20 μm gap **Backside: 16 strips**

Antoine Drouart antoine.drouart@cea.fr

Virtues & Flaws of diamond detectors

\odot

- Radiation hard (>2.15p/cm²)
- low occupation time \rightarrow high counting rate 10⁷pps
- ultra fast signal \rightarrow time resolution σ = 30ps
- reasonable energy resolution $\sigma = 17$ keV (single crystal)
- small size, biggest in use 60x40mm² [PCD, Cave A @ GSI]
- thickness > 50 μ m \rightarrow restricted to high energy
- require high speed electronics
- single crystals have better performances but are smaller (few mm²) → Mosaic detector ?
- → very promising technique, lot of developments

irfu

Relativistic regime : 500MeV/u KaBes on the NA48 exp @ CERN (in use)

(Well... they are used for Kaons and not for Heavy ions, but they could be !!!)

B. Peynaud, NIM A 535 (2004) 427

Fig. 1. The K12 charged kaon beam line with KABES and K^+/K^- focusing at the DCH spectrometer.

Need to measure trajectories to obtain the momentum of individual Kaons (~60GeV/c)

First School on Beam Diagnostics 30.3. - 3.4.2009

irfu

Materials Sciences Division

Time projection Chamber with Micromegas

nstitute of Research into the Fundamental Laws of the Universe Materials Sciences Division

KaBes drift chambers for real

Performances

- •Time resolution = 0.7 ns (σ)
- \bullet Spatial res. of 70 μm
- 40 MHz, expected up to 1GHz

DITANET.

• Efficiency close to 100 %

Materials Sciences Division

Antoine Drouart antoine.drouart@cea.fr

First School on Beam Diagnostics 30.3. - 3.4.2009

irfu

red

saclay

Virtues & Flaws of Micromegas TPC

\odot

- Radiation hard
- Very high counting rate : up to 10⁹pps !
- Very good position resolution < 100µm
- 1 direction only
- poor energy resolution (~10%)
- need an independent time signal for trigger

Micromegas gas detectors have a wide range of applications since the "drift zone" can include a converter that produce electrons from any kind of initial radiation

e.g. piccolo micromegas for neutron detection

DITANET

saclav

Antoine Drouart antoine.drouart@cea.fr

irfu

Antoine Drouart antoine.drouart@cea.fr

Antoine Drouart antoine.drouart@cea.fr

First School on Beam Diagnostics 30.3. - 3.4.2009

DITANET

ch into the Fundamental Laws of the Universe

saclay

Division

Beam trajectories after fragmentation 0.5m before target

1.5m before Target

Reconstruction on target

First School on Beam Diagnostics 30.3. - 3.4.2009

(hor+vert)

Materials Sciences Division

Antoine Drouart antoine.drouart@cea.fr

First School on Beam Diagnostics 30.3. - 3.4.2009

DITANET S

SPhN Nuclear Physics Service

irfu

Low Pressure gas detector : basic principles

Institute of Research into the Fundamental Laws of the Universe

Antoine Drouart antoine.drouart@cea.fr

DITANET

saclay

Basic CATS/BTD electronics Institute of Research into the Fundamental Laws of the Universe Materials Sciences Division Mux ADC Strip Differential Common Mode amplifier Integrator 0.4V/pc G=36 + new electronics with individual trigger → 3-5 channels coded instead of 28 Constant fraction discriminator Anode wires ADC Fast amplifier G = 200 T_{rise} < 1ns irfu <u>re</u>

Performances

Count rate capability ~ 10⁵ pps/cm²

Low dead time \cong 1 ms / strip

Spatial Resolution : σ_X , $\sigma_Y \sim 400 \ \mu m$

Time resolution < 0.5 ns

Efficiency > 90 %

Energy resolution ~ 20%

Institute of Research into the Fundamental Laws of the Universe

Divisio

Virtues & Flaws of Low pressure detectors

\odot

- fast signal \rightarrow good time resolution σ = 100ps
- good position resolution $\sigma = 100 \mu m$
- high detection efficiency (~100%)
- large size available (>100cm²)
- cheap and can be repaired
- Thin : \sim 5µm of Mylar (from windows and cathodes)

\bigotimes

- vulnerable to discharge : rate $< 10^6$ pps
- 1.5 μ m windows required \rightarrow E_{ion} > 10MeV/u
- fragile and delicate to use

irfu

saclav

Divisior

Very low Energy regime : 5MeV/u e.g.: SPIRAL/SPIRAL2 radioactive beams (in use / 2014)

irfu

e

Antoine Drouart antoine.drouart@cea.fr

DITANET

Emissive foil Detectors

saclay

The Se⁻D : Secondary electron Detector

Institute of Research into the Fundamental Laws of the Universe

irfu

Materials Sciences Division

Antoine Drouart antoine.drouart@cea.fr

Institute of Research into the Fundamental Laws of the Universe

Se⁻D Detector : full size

Secondary Electron Detector

Position reconstruction on the whole focal plane

Position resolution $\delta X = 3.7 \text{ mm}$ $\delta Y = 4.8 mm$

Position reconstruction with B=110Gauss

Position resolution $\delta X = 1.3 \text{ mm}$ $\delta Y = 1.8 mm$

> irfu -en

Institute of Research into the Fundamental Laws of the Universe

Materials Sciences Division

First School on Beam Diagnostics 30.3. - 3.4.2009

DITANET saclay

Se⁻D in VAMOS

Antoine Drouart antoine.drouart@cea.fr

First School on Beam Diagnostics 30.3. - 3.4.2009

DITANET

Se-D front end electronics

Position

Gassiplex 0,7 μm CMOS 16 Channels

Sensibility: 3,6 V/pc

Peaking time: 1,2 µS

Serial Output

Total Channels 150

Timing Channel

Rise Time 4.5 nsec

Antoine Drouart antoine.drouart@cea.fr

First School on Beam Diagnostics 30.3. - 3.4.2009

œ

DITANET

irfu

Results of tests & experiments

lons	E (MeV/A)	dE/dx (MeV/mm)	Efficiency	Time resolution (FWHM ps)
Heavy Fission frag. Average Z~53	0.6	13800	100%	250
Light fission frag. Average Z~45	1	13200	100%	250
⁷⁶ Ge	2	10500	100%	500
²⁴ Mg	12	1050	85%	800
¹² C	10	320	75%	1000
Alpha	1.5	160	40%(70%*)	1200*

Conclusions

-Detector able to cope with a few **10** ³**pps** (limited by electronics dead time)

- theoretical limit ~10⁷pps or more ?
- -Spatial resolution : **1-2mm**
- -Time resolution : 1.5ns (light ions) to 300ps (heavy ions Z>40)
- -Total thickness in the beam : 0.6µm Mylar foil = 75µg/cm²

irfu

P)

Virtues & Flaws of Emissive foil detectors

\odot

- detector as thin as it can be
- fast signal \rightarrow good time resolution σ < 100ps

8

- poor sensitivity to high energy, light ions
- moderate position resolution σ~600µm
- require high electric field and/or magnetic field
- surface effect

 lots of "dead zone"

Characteristics depend on the secondary electron detector

- gas detector : large size
- micro channel plate : high counting rate
- scintillating plastic : easy to use

irfu

Conclusions

Beam tracking require event by event measurement and :

- → low thickness not to perturb the incoming ion
- ➔ good position and time resolution
- → cope with high flux of ions

Technique	Regime	σ(time)	σ(pos.)	Max rate
	MeV/u	ps	μm	Hz
Diamonds	500	30	10 (strip)	10 ⁷
Atm. pressure	500	700	100	10 ⁸
Low pressure	50	500	150	10 ⁵
Emissive foils	5	100	500	10 ⁶

irfu

Residual gas detectors

For a vacuum in the beam line ~10⁻⁶mbar
 ⁴⁰Ar @ 3A.MeV looses 23eV/cm
 → need higher pressure ~10⁻³ mbar
 but difficult to contain

Existing residual gas detector @10⁻⁶mbar with MCP (Barabin & al. EPAC2004)

