# LINACS/Transport Lines Emittance Measurement



by Kay Wittenburg

## LINACS/Transport Lines Emittance Measurement

In a transfer line (or Linac), the beam passes once and the shape of the emittance ellipse at the entry to the line determines its shape at the exit. Exactly the *same* transfer line injected first with one emittance ellipse and then different ellipses has to be accredited with *different*  $\alpha$  and  $\beta$ ,  $\gamma$  functions to describe the cases. Thus  $\alpha$  and  $\beta$ ,  $\gamma$  depend on the input beam and their propagation depends on the structure. Any change in the structure will only change the  $\alpha$  and  $\beta$ ,  $\gamma$  values downstream of that point. ... The input ellipse must be chosen by the designer and should describe the configuration of all the particles in the beam.

### Explain ways of measuring the emittance of a charged particle beam in a Linear accelerator or a transport line without knowing the beam optic parameters α, β, γ.

a) <u>Exercise L1</u>: Which one is the preferable method for a high energy proton transport line (p >5 GeV/c)?

Solution: 3 (thin) screens/SEM grids or varying quadrupole which measure the different beam widths  $\sigma$ . For pepper pot or slits one needs a full absorbing aperture.

b) Exercise L2: Assuming that the geometry between the measurement stations and the transport matrices M of the transport line are well defined (including magnetic elements), describe a way to get the emittance using 3 screens and the  $\sigma$ -matrix.

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \begin{pmatrix} \sigma_{y}^{2} & \sigma_{yy'} \\ \sigma_{yy'} & \sigma_{y'}^{2} \end{pmatrix} = \varepsilon_{rms} \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} = \sigma \ matrix$$

If  $\beta$  is known unambiguously as in a circular machine, then a single profile measurement determines  $\varepsilon$  by  $\sigma_y^2 = \varepsilon\beta$ . But it is not easy to be sure in a transfer line which  $\beta$  to use, or rather, whether the beam that has been measured is matched to the  $\beta$ -values used for the line. This problem can be resolved by using three monitors (see Fig. 1), i.e. the three width measurements determine the three unknowns  $\alpha$ ,  $\beta$  and  $\varepsilon$  of the incoming beam.



 $\sigma$  elements at first Screen or Quadrupole (Ref. 1).

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \begin{pmatrix} \sigma_{y}^{2} & \sigma_{yy} \\ \sigma_{yy}^{2} & \sigma_{y}^{2} \end{pmatrix} = \varepsilon_{rms} \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix} = \sigma matrix$$

Beam width<sub>rms</sub> of measured profile =  $\sigma_{11} = \sqrt{\beta(s) \cdot \varepsilon}$ ,

 $L_1$ ,  $L_2$  = distances between screens or from Quadrupole to screen and Quadrupole field strength are given, therefore the transport matrix M is known.

Employing transfer matrix gives:  $M \cdot \sigma \cdot M^{t}$ 

$$\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \cdot \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} \cdot \begin{pmatrix} M_{11} & M_{21} \\ M_{12} & M_{22} \end{pmatrix} = \sigma^{measured} = \begin{pmatrix} \sigma_{y}^{2} & \sigma_{yy'} \\ \sigma_{y'y} & \sigma_{y'}^{2} \end{pmatrix}^{measured} = \mathcal{E}_{rms} \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$$
$$= \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \cdot \begin{pmatrix} \sigma_{11}M_{11} + \sigma_{12}M_{12} & \sigma_{11}M_{21} + \sigma_{12}M_{22} \\ \sigma_{21}M_{11} + \sigma_{22}M_{12} & \sigma_{12}M_{21} + \sigma_{22}M_{22} \end{pmatrix}$$
$$= \begin{pmatrix} M_{11}(\sigma_{11}M_{11} + \sigma_{12}M_{12}) + M_{12}(\sigma_{21}M_{11} + \sigma_{22}M_{12}) & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$
$$\dots$$

Solving  $\sigma_{11} \sigma_{12}$  and  $\sigma_{22}$  while Matrix elements are known: <u>Needs minimum of three</u> different measurements, either three screens or three different Quadrupole settings with different field strength.

$$\varepsilon_{rms} = \sqrt{\det \sigma} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2} \quad (\text{from } \beta\gamma - \alpha^2 = 1)$$
(2)

c) <u>Exercise L3</u>: In a transport line for p = 7.5 GeV/c protons are two measurement stations. The first is located exactly in the waist of the beam and shows a beam width of  $\sigma_y = 3$  mm, the second at a distance of s = 10 m shows a width of  $\sigma_y = 9$  mm. Assuming no optical elements in this part, calculate the emittance and the normalized emittance of the beam.

No optical elements 
$$\Rightarrow M = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$$
 (3)

Waist 
$$\Rightarrow \alpha = \sigma_{12} = \sigma_{21} = 0 \quad \Rightarrow \varepsilon_{rms} = \sqrt{\sigma_{11}\sigma_{22}}$$
 (4)

Momentum p = 7.5 GeV/c => relativistic  $\gamma\beta \approx 7.5$ 

Measured width at 
$$s = 0 \implies (3 \text{ mm})^2 = \sigma_y^2 (s=0) = \sigma_{11}$$
 (5)

Calculate  $\sigma_{22}$  with width measured at s = 10 m and with (1, 4) => (9 mm)<sup>2</sup> =  $\sigma_y^2$  (s=10) =  $M_{11}^2 \cdot \sigma_{11} + M_{12}^2 \cdot \sigma_{22} = \sigma_{11} + s^2 \cdot \sigma_{22}$  ( $\sigma_{11}, \sigma_{22}$  at s=0) (6)

with (5) => 
$$\sigma_{22} = \frac{\sigma_y^2(10) - \sigma_y^2(0)}{s^2}$$
 (7)  
With (4) and (7) =>

$$\varepsilon_{rms} = \sqrt{\sigma_{11}\sigma_{22}} = \sqrt{\sigma_y^2(0) \cdot \frac{\sigma_y^2(10) - \sigma_y^2(0)}{s^2}} = \frac{\sigma_y(0)}{s} \sqrt{\sigma_y^2(10) - \sigma_y^2(0)}$$
  
= 2.5 \cdot 10^{-6} m rad

 $\epsilon^{normalized} = \epsilon_{rms} \gamma \beta = 19 \cdot 10^{-6} \text{ m rad} = \underline{19 \text{ mm mrad}}$ 

Additional exercise: Calculate  $\beta$ (s=0 and s=10m)

Beam width  $\sigma_{rms} = \sqrt{\beta(s) \cdot \varepsilon}$ At s=10 m:  $\sigma^2 = \beta \varepsilon \implies \beta = 32.4$  m At s= 0 m :  $\beta = 3.6$  m

What is the influence on the emittance  $\varepsilon$  assuming at s = 10m this b, a dispersion of D = 1 m and a momentum spread of  $\Delta p/p = 10^{-3}$ ?

$$\varepsilon = \frac{\sigma^2 - \left(D \cdot \frac{\Delta p}{p}\right)^2}{\beta} = \frac{81 \cdot 10^{-6} - 1 \cdot 10^{-6}}{32.4} = 2.469 \,\pi \, mm \, mr \, ad$$

or  $\approx 1\%$  which is less than the typical accuracy of a profile measurement

## References

S.Y. Lee, Accelerator Physics, World Scientific, pp 54-55 is attached

Emittance Measurements at the Bates Linac *K.D. Jacobs, J.B. Flanz, T. Russ* <u>http://accelconf.web.cern.ch/accelconf/p89/PDF/PAC1989\_1529.PDF</u> attached

Basic accelerator course, like Schmüser and Rossbach in previous <u>CAS CERN 94-01</u> <u>v 1</u> <u>http://doc.cern.ch/cgi-bin/tiff2pdf?/archive/cernrep/1994/94-01/p17.tif</u>

### Beam-line instruments/ <u>Raich, U</u>;

*In:* Joint US-CERN-Japan-Russia Particle Accelerators School on Beam Measurement, Montreux, Switzerland, 11-20 May 1998 - World Sci., Singapore, 1999. - pp.263-276

For teachers: attached: i)this document, ii) Criegee, PLIN note 88-04 (Criegee.pdf) An other method: (P.J. Bryant, 5th CAS, Finnland)

PLIN - Note 88-04 L. Criegee August 18, 1988

## Emittance Measurements for Linac III

#### Principle

The measurement of the Courant-Snyder beam parameters  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\epsilon$  is based on the evolution of the beam matrix  $\sigma$ . If the transport is described by the 2 x 2 matrix

$$R = \left(\begin{array}{cc} R_{11} & R_{12} \\ R_{21} & R_{22} \end{array}\right) \; ,$$

with  $R_{11}R_{22} - R_{12}R_{21} = 1$ , the beam evolution is given by<sup>1</sup>

$$\sigma = \begin{pmatrix} \epsilon\beta & -\epsilon\alpha \\ -\epsilon\alpha & \epsilon\gamma \end{pmatrix} = R \begin{pmatrix} \epsilon\beta_0 & -\epsilon\alpha_0 \\ -\epsilon\alpha_0 & \epsilon\gamma_0 \end{pmatrix} R^T .$$

 $\epsilon\beta$  is the measurable squared beam envelope  $\hat{x}^2$  at the end of the transport. It depends linearly on the initial beam matrix elements:

$$\hat{x}^2=\epsiloneta=R_{11}^2\cdot\epsiloneta_0-2R_{11}R_{12}\cdot\epsilonlpha_0+R_{12}^2\cdot\epsilon\gamma_0$$

To obtain  $\epsilon \alpha_0$ ,  $\epsilon \beta_0$ ,  $\epsilon \gamma_0$ , and  $\epsilon^2 = \epsilon \beta_0 \cdot \epsilon \gamma_0 - \epsilon \alpha_0 \cdot \epsilon \alpha_0$ , one has set R to three (sufficiently different) values, measure the resulting  $\hat{x}^2$ , and solve three linear equations.

#### 3-Position Method

One simple example is the simultaneous measurement with three profile harps as forseen for the HEBT. Here the transport matrix

$$R(S) = \left(\begin{array}{cc} 1 & S \\ 0 & 1 \end{array}\right)$$

describes just a variable drift space. The three settings  $S_1 = -L$ ,  $S_2 = 0$ ,  $S_3 = +L$  give the beam transport from a reference position  $S_2$  to two symmetric ones up- and downstream. They lead to the equations

$$\begin{array}{l} \hat{x}_1^2 &= \epsilon\beta_2 - 2L \cdot \epsilon\alpha_2 + L^2 \cdot \epsilon\gamma_2 \\ \hat{x}_2^2 &= \epsilon\beta_2 \\ \hat{x}_3^2 &= \epsilon\beta_2 + 2L \cdot \epsilon\alpha_2 + L^2 \cdot \epsilon\gamma_2 \end{array} \right\} \text{ with the solution } \begin{cases} \epsilon\beta_2 &= \hat{x}_2^2 \\ \epsilon\alpha_2 &= (\hat{x}_3^2 - \hat{x}_1^2)/(4L) \\ \epsilon\gamma_2 &= (\hat{x}_1^2 - 2\hat{x}_2^2 + \hat{x}_3^2)/(2L^2) \\ \epsilon^2 &= \epsilon\beta_2 \cdot \epsilon\gamma_2 - (\epsilon\alpha_2)^2 \end{cases}$$

The measurements should be done in the vicinity of a beam waist where the curvature due to  $\epsilon\gamma$  is most noticeable. If the beam waist is <u>exactly</u> at  $S_2$ , we have  $\hat{x}_3 = \hat{x}_1$ ,  $\alpha_2 = 0$ . The emittance formula is then reduced to

$$\epsilon = \hat{x}_2 \sqrt{\hat{x}_3^2 - \hat{x}_2^2}/L$$
 (for  $\hat{x}_2 = minimum$ 

<sup>1</sup>see K.L.Brown et al., CERN 80-04 (TRANSPORT manual)

P.y - x2 = 1

#### 3-Gradient Method

If the 3-Position method cannot be used, the beam parameters can be measured by varying the gradient of a quadrupole. The system of the quadrupole and a subsequent transport section with constant elements C, S, C' and S' (CS' - C'S = 1) is described by

$$R(k) = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} \begin{pmatrix} \cos kl & k^{-1} \sin kl \\ -k \sin kl & \cos kl \end{pmatrix} \text{ with } \begin{cases} R_{11}(k) = -C \cos kl & -Sk \sin kl \\ R_{12}(k) = -Ck^{-1} \sin kl & +S \cos kl \end{cases}$$

The measurement of  $\hat{x}^2$ , as defined above, for three different quadrupole settings k yields the linear equations to determine all beam parameters.

#### Simplified 3-Gradient Method

The function  $\hat{x}^2(k)$  is greatly simplified<sup>2</sup> if the quadrupole can be described as a <u>thin</u> lense  $(kl \rightarrow 0, k^2l \rightarrow q = f^{-1})$ :

$$R_{11}(k) \rightarrow R_{11}(q) = C - q \cdot S$$
$$R_{12}(k) \rightarrow R_{12}(q) = S$$

This leads to

$$\begin{aligned} \hat{x}^2(q) &= (C - q \cdot S)^2 \cdot \epsilon \beta_0 - 2S(C - qS) \cdot \epsilon \alpha_0 + S^2 \cdot \epsilon \gamma_0 \\ &= S^2 \epsilon^2 / \hat{x}_0^2 + \hat{x}_0^2 \cdot (q - q_{min})^2 \ . \end{aligned}$$

with  $q_{min} = C/S - \alpha_0/\beta_0$  being the setting for minimal  $\hat{x}^2$ , and  $\hat{x}_0^2 = \epsilon \beta_0$  the squared envelope before the quadrupole. The emittance is then given by

$$\epsilon = \frac{\hat{x}(q_{min}) \sqrt{\hat{x}^2(q) - \hat{x}^2(q_{min})}}{S^2 |q - q_{min}|}$$

The other beam parameters (at the entrance of the quadrupole) are

Some comments may be in order:

- 1. The formula for the emittance is simple enough to be coded in POCAL.
- 2. The emittance measurement after linac tank I forsees the variation of quad No 52, while No 53 is turned off  $^3$ . The above formalism allows also measurements with No 53 powered (fixed  $Q' \neq 0$ ) and also to account for the defocussing by (linear) space charge and by RF acceleration.
- 3. Suitable quadrupole settings and the quality of the approximations can be investigated by beam transport calculations.

<sup>&</sup>lt;sup>2</sup>G.<sup>3</sup>Jacobs, private communication <sup>3</sup>S.H. Wang, PLIN - Note 88-01 (June 24, 1988)

#### An other method: (P.J. Bryant, 5th CAS, Finnland)

By definition, Eq. (4),

$$\varepsilon = \pi \frac{\sigma_0^2}{\beta_0} = \pi \frac{\sigma_1^2}{\beta_1} = \pi \frac{\sigma_2^2}{\beta_2}$$
(5)

where  $\beta_0$ ,  $\beta_1$  and  $\beta_2$  are the  $\beta$ -values corresponding to the beam and are therefore uncertain. Although we may not know  $\beta$  and  $\alpha$ , we do know the transfer matrices and how  $\beta$  and  $\alpha$  propagate through the structure (see lectures by K. Steffen in these proceedings).

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{1} = \begin{pmatrix} C^{2} & -2CS & S^{2} \\ -CC' & CS' + SC' & -SS' \\ C'^{2} & -2C'S' & S'^{2} \end{pmatrix} \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{0}$$
(6)

where  $\gamma = (1 + \alpha^2)/\beta$ . Thus, from Eq. (6)

$$\beta_{1} = C_{1}^{2}\beta_{0} - 2C_{1}S_{1}\alpha_{\theta} + \frac{S_{1}^{2}}{\beta_{\theta}}(1 + \alpha_{0}^{2})$$
<sup>(7)</sup>

$$\beta_2 = C_2^2 \beta_0 - 2C_2 S_2 \alpha_0 + \frac{S_2^2}{\beta_0} (1 + \alpha_0^2)$$
(8)

and from Eq. (5),

$$\beta_0 = \pi \frac{\sigma_0^2}{\epsilon}$$
(9)

$$\beta_1 = \left(\frac{\sigma_1}{\sigma_0}\right)^2 \beta_0 \tag{10}$$

$$\beta_2 = \left(\frac{\sigma_2}{\sigma_0}\right)^2 \beta_0 \tag{11}$$

From Eqs. (7) and (8), we can find  $\alpha_0$  and using Eqs. (10) and (11), we can express  $\alpha_0$  as,

$$\alpha_0 = \frac{1}{2} \beta_0 \Gamma \tag{12}$$

where

$$\Gamma = \frac{\left(\sigma_2 / \sigma_0\right)^2 / S_2^2 - \left(\sigma_1 / \sigma_0\right)^2 / S_1^2 - \left(C_2 / S_2\right)^2 + \left(C_1 / S_1\right)^2}{\left(C_1 / S_1\right) - \left(C_2 / S_2\right)} \quad (13)$$

Since  $\Gamma$  is fully determined, direct substitution back into Eq. (7) or Eq. (8), using Eq. (10) or Eq. (11) to re-express  $\beta_1$  or  $\beta_2$ , yields  $\beta_0$  which via Eq. (9) gives the emittance,

$$\beta_{0} = 1 / \sqrt{\left(\sigma_{\frac{1}{2}} / \sigma_{0}\right)^{2} / S_{\frac{1}{2}}^{2} - \left(C_{\frac{1}{2}} / S_{\frac{1}{2}}\right)^{2} + \left(C_{\frac{1}{2}} / S_{\frac{1}{2}}\right)\Gamma - \Gamma^{2} / 4}$$
(14A)

$$\varepsilon = \left(\pi \sigma_0^2\right) \sqrt{\left(\sigma_{\frac{1}{2}} / \sigma_0\right)^2 / S_{\frac{1}{2}}^2 - \left(C_{\frac{1}{2}} / S_{\frac{1}{2}}\right)^2 + \left(C_{\frac{1}{2}} / S_{\frac{1}{2}}\right)\Gamma - \Gamma^2 / 4} \quad .$$
(14B)