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• Accelerators are devices which accelerate charged particles 
like electrons, protons and ions

• means of acceleration range from static electric fields, pulsed 
electric fields, varying magnetic fields and microwaves

• the energy of accelerated particles are measured in eV or for 
ions in eV/nucleon

• a particle gains the energy of 1 eV while traveling in the field 
between two electrodes with a potential difference of    
1 Volt 

• we use also units of keV, MeV, GeV and TeV
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the beam current is measured in Ampere or mAmpere

• the beam current in microwave accelerators is bunched

• bunches are typically ~1/20th of the microwave wavelength

• there are several definitions of beam currents used

• instantaneous current or peak current is the current within a 
bunch, dI/dt = eNp c/lb  where lb is the bunch length

• pulsed current is measured as the average current in a (linac)
pulse. I = enbNp/τp where nb in the number of bunches in the 
pulse, Np the number of particles per bunch and τb the 
duration of the pulse

• average current is the current averaged over some longer time



4

Accelerator Physics

4

1st School, Royal Holloway, 30.3. - 3.4.2009

1 TeV

1 GeV      

1 MeV

1 keV

proton storage rings

electron storage rings

electron linear accelerators

ion linacs

electrostatic and misc. other accelerators
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most particles travel close to the speed of light:

• 40 keV/u Ar ion beam                             β = 0.0092447

• 50 keV electrons                                      β = 0.4126858

• 25 MeV protons (cyclotron)                     β = 0.2266106

• 3 GeV electrons (DIAMOND)               β = 0.9999999861

• 8 TeV protons in LHC                            β = 0.99999999315

• 50 GeV electrons (SLAC)                         β = 0.9999999999478
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• simplest accelerator is the electrostatic accelerator (e-guns, 
Van de Graaf, Tandem)

• varying magnetic field in betatron

• pulsed electric fields in Tesla transformer

• most accelerators rely on microwaves to accelerate particles 

cyclotron, linear accelerator, synchrotron, storage ring

• time is too short to cover all

• we concentrate on 

linear accelerator, synchrotron, storage ring 
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Linac:
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1 of 10,000 SLAC linac cells
operating at 3 GHz

3 cm klystron
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a synchrotron is a “wound-up” linear accelerator

employing one or few cavities many times

what is a storage ring?

basically a synchrotron which is used 

NOT to accelerate, but only

to store a particle beam at a constant energy
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main storage ring components

focusing

bending

vacuum 
chamber

Insertion device
beam line

injection
system

rf-cavity

photon beam line

e-
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ESRF Booster



13

Accelerator Physics

13

1st School, Royal Holloway, 30.3. - 3.4.2009

SPEAR-3
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SPEAR-3
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SPEAR-3
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SPEAR-3
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SPEAR-3
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SUBARU : 2.3 m undulator, λp = 7.6 cm, 30 periods

SUBARU undulator
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• in a storage ring, particles travel along the orbit for many hours 
at the speed of light (well, very close to it)

• during 15 hours this is a distance of 16.200.000.000.000 m or 
16.200.000.000 km or 16.2 billion km or 108 times from 
earth to sun

• in modern storage rings, particles travel this distance within
< 100 µm of the ideal orbit

• in linear colliders nano-beams from independent accelerators 
must be made to collide

• this cannot be achieved by steering alone !
• we must employ stability principles for beam dynamics and 

very accurate components and diagnostics
• modern accelerators are not possible without team work 

involving many skills
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rf-system

lifetime

emittance

bunch length

UHV

magnets

energy

beam intensity

insertion device

aperture

power supplies

beam position stabilitycrit. photon energy
ring lattice

energy spread

support

alignment
interrelations
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• need ultra high vacuum UHV ( ~ 10-9 Torr) to avoid loss of 
particles due to scattering
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bending magnets for beam guidance

why magnets? why not electric fields?

Lorentz force: FL  eE  ev  B

should we use electrical or magnetic fields?

for equal force: EV/m  cBT

or for β = 1: 1 Tesla ≡ 3  108 V/m
a 1 Tesla magnet is much easier to built than is plates holding 300 MV/m !

not true if β << 1



23

Accelerator Physics

23

1st School, Royal Holloway, 30.3. - 3.4.2009

beam deflection

bending radius

deflection angle

centrifugal force = Lorentz force

where A is the atomic number (for electrons A = 1) and Z the charge multiplicity

  ℓ b


Amv 2

  eZvB

1
  B

B
B  Amc2

eZc  
c

AEu

Z ≈ 3.333
AEu

Zwhere

is the beam rigidity

1
 m−1  0.29979 Z

A
B T

E GeV
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bending magnet during measurements
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principle of focusing

x
α = x/f

focusing lens

focal point

focal length, f

  lm
  eBlm

cp  x
B  Bo  gx

  eglm
cp x  klm x
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km−2  0. 3 gT /m

cp GeVquadrupole strength:

focal length: 1
f
 kℓq

quadrupole magnet

V  −gxy

x  y   1
2

R2

derive field from potential:

pole profile:

By  ∂V
∂y  gx , and Bx  ∂V

∂x  gy
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quadrupoles

pole profile

storage ring 
quadrupoles                                                     
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Quadrupole is focusing in one plane
defocusing in other plane

How do we get focusing in both planes ?

x-plane

y-plane

d

f 2f 1

1
f  1

f1
 1

f2
− d

f1 f2
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chromatic and geometric aberrations

fo

dE > 0

dE < 0

sextupolequadrupole

dE = 0

need sextupoles to correct for chromatic aberrations, but get now

geometric aberrations limiting the dynamic aperture
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to construct a circular accelerator

• we place all magnets along an ideal orbit

• the excitation of all bending magnets deflect the beam by 360 deg

• the excitation of the quadrupoles defines the focusing or beam
dynamics configurations – the lattice

• a correct lattice ensures beam stability in the transverse planes (x,y)

• particles are not forced to travel along ideal orbit, but oscillate about 
the ideal orbit (betatron oscillations)

• the number of oscillations per turn are called the tunes (Qx , Qy)

• they may not be equal to n, n/2, n/3, n/4…..where n is an integer

• resonances !



31

Accelerator Physics

31

1st School, Royal Holloway, 30.3. - 3.4.2009

all particles are contained within an envelope given by

where         is the emittance of the beam in the x- or y-plane 

and                is the betatron function

• the emittance is a constant around the circular accelerator

• the betatron function is defined by the lattice (quadrupoles)

• there is only one betatron function per plane and configuration

• its values are tabulated

Ex,yz  x,yx,yz

x,y

x,yz
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Betatron Functions
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particles are expected to travel along to the ideal orbit
• well, close
• not all particles have the correct energy
• not all magnets have the ideal field or are aligned ideally
• we get dispersion
• on top of dispersion we also get orbit distortion
• both dispersion and orbit distortion define reference orbits
• particles with different energies follow different reference orbits

• for perfect ring and energy 

x refz  xdz  z
Δp
p0

x refz ≡ 0
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• orbit distortion must be corrected absolute to < 100 µm

• need beam position monitors and steering magnets

• relative sensitivity of BPMs < 1µm 

• need sensitivity for beam stability and reproducibility

• and for diagnostic purpose – transfer matrix
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longitudinal motion and stability

principle of phase stability (Veksler, McMillan 1946)

• for proper interaction of beam with cavity, revolution time must be 
integer multiple of Rf-period

• ok for ideal energy particle

• what about non-ideal energy particles?

VRf

phase

πψs
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• periodic focusing solutions for the transverse planes and

• principle of phase focusing

• together with precisely built components

• and diagnostic instruments

allows us to design accelerators and be confident a 
beam will survive on a precise orbit for more than

16.2 billion km
or collide nano-meter beams from two independent 
accelerators


