

Beam Energy Measurements in Accelerators

S. Bernal, (IREAP, U. of Maryland, College Park MD, USA)

DITANET School RHUL, March 31st, 2009

University of MD Electron Ring (UMER)

Outline

Introduction:

- *Acronyms / Symbols
- *Energy Scale: from BEC to BB
- Why and How
- *Accelerator Examples
- Energy in the LHC

• Basics:

Energy-Momentum in Special Relativity *Power, Luminosity, Emittance, Brightness Energy in the Tevatron and UMER

• Circular Machines:

Magnetic rigidity, betatron and spin tunes Momentum compaction Examples: ISR, UMER *Synchrotron Radiation Energy Measurement in LINACS Absolute Energy Measurements Resonant Spin Depolarization

*Energy Spread

Spectrometer OSR Interferometry Boersch effect Energy Analyzer

Acronyms					
AG	Alternating Gradient	ALS	Advanced Light Source (LBNL)		
BEC	Bose-Einstein Condensate	ANL	Argonne National Laboratory		
BPM	Beam Position Monitor	APS	Advanced Photon Source (ANL)		
CRT	Cathode-Ray Tube	CEBA	Continuous Electron Beam Accel.		
CTR	Coherent Transition Radiation	DAFNE	(LNF) Lab. Nazionali di Frascati		
ERL	Energy Recovery Linac	DESY	Deutsches Elektronen Synchrotron		
FEL	Free Electron Laser	ILC*	International Linear Collider		
HEP	High Energy Physics	ISR	Intersecting Storage Rings (CERN)		
HEDP	High Energy-Density Physics	KEK	"Koh-Ene-Ken"		
LINAC	Linear Accelerator	LBNL	Lawrence Berkeley National Lab.		
OSR	Optical Synchrotron Radiation	LEP	Large Electron-Positron STR		
OTR	Optical Transition Radiation	LHC	Large Hadron Collider		
RF	Radio Frequency	MGH	Massachusetts General Hospital		
SR	Synchrotron Radiation	RHIC	Relativistic Heavy-Ion Collider		
STR	Storage Ring	SLAC	Stanford Linear Accelerator		
SNS	Spallation Neutron Source	TJNAF	Thomas Jefferson Natl. Accel. Fac.		

UMER University of MD Electron Ring

Symbols

α	Momentum Compaction	L	Luminosity
β	Normalized velocity v/c	m	Rest mass
γ	Normalized Energy <i>E/mc</i> ²	V _H	Horizontal Tune
γ _t	Transition γ	$\omega_{ m RF}$	RF Angular Frequency
Βρ	Magnetic Rigidity	ρ	Local Bending Radius
С	Speed of Light	R	Average Orbit Radius
С	Circumference	σ	Reaction Cross Section
D	Dispersion Function	σ_{b}	Beam Cross-Section Radius
Eo	Rest Mass Energy	Τ	Period
Ed	Design Total Energy	To	Period of Reference Particle
η	Slip Factor		
E _{X,Y}	Emittance _{Horizontal} , Vertical	W	Kinetic Energy
h	Harmonic Number (RF)	W _d	Design Kinetic Energy
l _b	Beam Current		6

Introduction: Energy Scale, from BEC to BB

PHENOM./DEVICE	Energy	PARTICLE	Rest Mass Energy, <i>E₀</i>
BEC: Ultra-cold atoms (170 nK)	10 ⁻¹¹ eV	Neutrino (electron), v _e	< 2.2 eV
Liquid Helium (4 K)		Electron, e-	511 keV
Th. Energy @ room temp.	1/40 eV	Muon, μ⁻	106 MeV
CRT electron beam	20-50 keV	Proton, p	938 MeV
Electron microscope beam	100 keV	bottom quark, b	4.1- 4.4 GeV
Fermilab Tevatron	1 TeV	Vector boson, Z ₀	91.2 GeV
LHC (center-of-mass energy)	14 TeV	top quark, t	169 - 174 GeV
Big Bang	?	Higgs Boson, ?	170 - 285 GeV

Introduction: Why and How

- Why:
 - HEP: Energy calibration for identifying particle "resonances"
 - MATERIALS SCIENCE/BIOLOGY: Crystallography
 - MEDICAL: Beam energy critical for light-ion beam therapy
 - MICROELECTRONICS, NANO-SCIENCE: Measure and control *energy spread* for high spatial-resolution electron and ion-beam lithography
 - NUCLEAR ASTROPHYSICS: Detector calibration
- How:
 - Beam orbit monitoring (e.g. in dispersive element)
 - Reaction with target with cross section sensitive to energy
 - Radiation monitoring and interferometry (e.g. OSR)
 - Resonant spin depolarization

Introduction: Energy in the LHC

From the LHC website:

ENERGY

How much energy are we talking about?

7 TeV = 7.10¹² eV · 1,6.10⁻¹⁹ J/eV = 1,12.10⁻⁶ J

It doesn't look like a lot of energy

For the ALICE experiment, each ion of Pb-208 reaches 1150/2 = 575 TeV.

So, the energy per nucleon is: 575/208 = 2,76 TeV

Let's calculate the kinetic energy of an insect of 60 mg flying at 20 cm/s:

$$E_k = \frac{1}{2} \text{ m} \cdot v^2 \implies E_k = \frac{1}{2} \cdot 6 \cdot 10^{-5} \cdot 0, 2^2 \sim 7 \text{ TeV}$$

That is, in LHC each proton will reach an energy similar to that of an annoying ... MOSQUITO!

But we have to keep in mind that this mosquito has 36 thousand trillion nucleons, whereas the 7 TeV in the LHC will be concentrate in one sole proton.

Basics: Energy-Momentum in Special Relativity

Energy-momentum 4-vector: $(E/C, \vec{p}), \quad (E/C)^2 - p^2 = (mc)^2$

10

Energy in the Tevatron and UMER

In principle, determine energy from speed of particles:

$$E = \left(1 - \frac{v^2}{c^2}\right)^{-1/2} mc^2, \quad v = \frac{C}{T} = Cf_{RF}.$$

For Tevatron, $C_0 = 2\pi \text{ km} \pm 1 \text{ mm}$ (!), $f_{RF} = 53... \text{ MHz} \pm 2 \text{ Hz}$ (real).

Further,

$$\frac{\Delta E}{E_d} = \beta^2 \gamma^2 \frac{\Delta \beta}{\beta} \text{ (use energy)}$$

For 1 TeV Tevatron, $\gamma \approx 1000; \beta \approx 1$, so

$$\frac{\Delta E}{E_d} \cong 10^6 \frac{10^{-3} \mathrm{m}}{2\pi \times 10^3 \mathrm{m}} \approx 10^{-1}!$$

For 10 keV UMER, γ≈ 1,02; β ≈ 0,199, so

$$\frac{\Delta E}{E_d} \cong 0.4 \frac{10^{-3} \mathrm{m}}{11,52 \mathrm{m}} \approx 3 \times 10^{-5}$$

Energy in the Tevatron and UMER

But $E_d = E_0 + W_d$. In UMER, really interested in

$$\frac{\Delta W}{W_d} \cong \frac{E_0}{W_d} \frac{\Delta E}{E_d} \approx 50 \times 3 \times 10^{-5} = 1,5 \times 10^{-3}$$

Back to Tevatron - better to use measured field of magnets (772 superconducting dipoles!) and study closed orbit to determine energy:

$$ds =
ho d\theta
ightarrow \int \frac{ds}{
ho(s)} = 2\pi$$
 (closed orbit!),
with $\frac{1}{
ho(s)} = \frac{B(s)}{p/q}$ (next slide).

For 1987 run at nominal 900 GeV, get $E = 901.5 \pm 0.2$ GeV. (Final error actually a bit larger b/c of dipole current regulation.)

From knowledge of *E*, and f_{RF} = 53104707 ± 2 Hz, get *R* = 1000,00610 m ± 0,00004 !

Circular Machines: Magnetic Rigidity, Tunes

$$\gamma m v^2 / \rho = q v B \rightarrow B \rho = p/q$$
: Magnetic Rigidity

Circular Machines: Momentum Compaction

Revolution time: $T = C/\beta c = 2\pi R/\beta c$

Effects of "energy error":

From energy triangle:

Momentum compaction α :

$$\frac{\Delta C}{C_0} = \alpha \frac{\Delta p}{p_0}$$

 $\frac{\Delta T}{T_0} = \frac{\Delta C}{C_0} - \frac{\Delta \beta}{\beta_0}, \quad \Delta C = C - C_0, \text{ etc}$

 $\frac{\Delta\beta}{\beta_{0}} = \frac{1}{\gamma^{2}} \frac{\Delta p}{p_{0}} = \frac{1}{\beta^{2} \gamma^{2}} \frac{\Delta E}{E}$

 $\therefore \frac{\Delta T}{T_0} = \left(\alpha - \frac{1}{\gamma^2}\right) \frac{\Delta p}{p_0} = \eta \frac{\Delta p}{p_0}; \qquad \eta = \alpha - \frac{1}{\gamma^2} = \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2}, \qquad \frac{\gamma_t mc^2}{\text{transition energy}}$

$$\mathcal{X} \approx \left(\text{ radial betatron tune} \right)^{-2}$$
, often very small

Circular Machines: Momentum Compaction

 With bunched beams (RF), adjusting \u03c8_{RF}, orbit monitoring, magnet measurement/calibration help achieve design parameters. See Prob. 7.5, Minty, Zimmermann.

$$\frac{\Delta T}{T_0} = -\frac{\Delta \omega_{RF}}{\omega_{RF}}, \quad \text{ff} \frac{ds}{\rho(s)} = 2\pi, \text{ with } \frac{1}{\rho(s)} = \frac{B(s)}{p/q}$$

 With coasting beams (no RF), determine *α* by measuring the *revolution frequency* as a function of momentum (e.g. UMER) or equivalent dipole field (e.g. ISR).

$$\frac{\Delta p}{p_0} = -\frac{\Delta B}{B_0}$$

Examples: Momentum Compaction

ISR (1974-1983): luminosity, Schottky scans, stochastic cooling, vacuum...

Mom. Comp. α , and slip factor η :

$$\frac{\Delta T}{T_0} = \eta \frac{\Delta p}{p_0}, \ \eta = \alpha - \frac{1}{\gamma^2}$$

No RF in **ISR**, so get revolution frequency data from noise (!) through Schottky signals as function of momentum.

No RF in **UMER** either, but few turns. Get revolution frequency from wall-current monitor. Increased frequency resolution by Lorentzian fit to main FFT peak.

Synchrotron Radiation

Energy lost to SR per turn :

1st equality applicable to protons if multiplied by $(m_e/m_p)^4 = 0.88 \times 10^{-13}$!

For bending magnet and wiggler sources get *continuous spectrum*. Half the power is radiated above and half is radiated below a *critical photon energy* E_c :

Energy Measurement in LINACS

Absolute Energy Measurements

DESCRIPTION / REFERENCE	SOME DETAILS	COMMENTS	machine
Two types of particles on same central orbit (e ⁺ , p) obtained by adjusting RF REF: USPAS98 Notes	$\beta_{p} = \frac{\omega_{RF-CP}}{\omega_{RF-Ce^{+}}} \frac{h_{e}}{h_{p}},$ Error: 10 ⁻⁴	 Circular machines only For not very relativistic only (e.g. p = 20 GeV/c) 	LEP
Use SR from bending dipoles with very different fields to get different $\lambda_{C.}$ REF: Karabekov etal EPAC96	Determine main dipole bending angle from study of K-edge absorption Error: 10 ⁻⁵ – 10 ⁻⁴	Linear or circular accelerators (with extraction line)	CEBAF SLAC
Elastic scattering off gaseous target (e.g. helium) REF. J.P. Burq, NIM (1980)	Measure scattering angle and recoil energy of nucleus. Use α source of known energy. Error 0.15%	Have to extract beamUp to 300 GeV	SPS
Resonant Spin Depolarization REF: Melissinos, CAS CERN95-06	Next Slide Energy error 1 MeV at Z ⁰ resonance (45.6 GeV)		LEP 19

Energy Measurement: Resonant Spin Depolarization

e⁻, or e⁺ become polarized b/c of SR (Ternov *etal,* 1962)

$$P(t) = P_{\infty} \left[1 - \exp\left(-\frac{t}{\tau}\right) \right], \quad \frac{1}{\tau} = \frac{1}{\tau_{P}}$$

 $P_{\infty} = 0.924 \ (\tau_D >> \tau_P)$ Polarization

time const.

Depolar. time const

For LEP, $\tau_p \sim 340$ min at the Z^0 energy (45.6 geV)

The spin tune v_s is:

$$v_{\rm S} = \gamma \underbrace{\frac{g-2}{2}}_{e^{\pm} \text{Gyromagnetic}} = \frac{E}{0.44065 \,\text{GeV}}$$

For LEP, *v*_S~100

Energy Measurement: Resonant Spin Depolarization

 B_X leads to vertical deflection and rotation of spin **S**.

A weak depolarizing field B_X at frequency ω_D will cause resonant depolarization if

$$v_{S} \pm \frac{\omega_{D}}{\omega_{C}} = n$$
, for integer n,

where $\omega_{\rm C}$ is the circulation angular frequency.

Beam polarization is measured by Compton scattering of laser photons from stored electron or positron beam. Compton cross section for scattering of polarized light is spin dependent.

Standard Accelerator Energy and Energy Spread Diagnostic: High resolution Magnetic Spectrometer

Energy dispersion converted to position on imaging screen

Advantage:

 can use any imaging method: phospor, OTR, OSR, etc.

Problems:

- usually large, bulky costly
- fixed position in beam line
- resolution limited by optics used to image beam

Energy Spread Measurements using Young's Double Slit Optical Synchrotron Interferometer (Michelson Stellar Interferometer 1921)

Beam size is a function of the visibility on the interference pattern:

$$\bigvee = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}.$$

Resolution: 10 microns for 150 micron beam (depends on experimental conditions)

Courtesy: Ralph Fiorito

Modern optical method: uses spatial coherence of beam radiation

1. Spatial coherence and profile of the object (e.g.beam) According to van Citterut-Zernike theorem, the complex degree of spatial coherence $\gamma(v_x, v_y)$ is given by the Fourier Transform of the profile f(x,y) of an object (beam)

$$\gamma(\upsilon_x,\upsilon_y) = \int f(x,y) \exp\left\{-i2\pi\left(\upsilon_x\cdot x + \upsilon_y\cdot y\right)\right\} dydx$$

where v_x, v_y are spatial frequency

$$\upsilon_x = \frac{2 \cdot \pi}{\lambda \cdot R_0} D_x, \ \upsilon_y = \frac{2 \cdot \pi}{\lambda \cdot R_0} D_y$$

 γ (spatial coherence function) is related to the **visibility** of a Young's Double slit interference pattern (used by Michelson in 1921 to measure the size of a star)

Courtesy: Ralph Fiorito

Energy spread measurement using spatial coherence of optical synchrotron radiation

In dispersive (magnetic) region, beam size is directly related to energy spread

$$\sigma_{_E} / E = \sigma_{_{beam}} / R$$

e.g. $\sigma_E / E \sim 3 \times 10^{-5}$ when $\sigma_{beam} \sim 80$ microns, R = 4 m

Boersch Effect

Electrons from thermionic sources follow Maxwell-Boltzmann distribution. At temperature T_s ,

 $\mathsf{FWHM} = \Delta E_{\mathsf{S}}[eV] = 2.45 \times k_{\mathsf{B}}T_{\mathsf{S}}$

Ex.: Tungsten filament at T_S = 2800 K $\rightarrow \Delta E_S$ = 0.6 eV Thermionic cathode at T_S = 1000 K $\rightarrow \Delta E_S$ = 0.2 eV [Note: FWHM is 2.35xRMS for gaussian]

Initial energy spread measured in UMER, electron microscopes and other low-energy devices is $\Delta E_0 > \Delta E_{S.}$

Difference $\Delta E_0 - \Delta E_S$ is referred to as the *Boersch Effect* (1954).

Boersch Effect increases with electron current. If ΔE_0 is too large, energy spread leads to chromatic aberration...

The Boersch Effect H. Boersch, Z. Phys. 139, 115 (1954). Reiser 6.4.1

Transverse temperature *unaffected* by acceleration

Therefore, acceleration results in temperature anisotropy

In equilibrium (due to collisions) beam wants to be equipartitioned

$$\mathsf{T}_{\mathsf{eq}} = \mathsf{T}_{\perp \mathsf{f}} = \mathsf{T}_{\square \mathsf{f}}$$

Assume longitudinal temperature very small, due to acceleration \rightarrow neglect

Since 2 transverse degrees of freedom, conservation of energy gives: $3T_{eq} = 2T_{\perp o} \implies T_{eq} = \frac{2}{3}T_{\perp o}$

Approximate behavior:

$$\begin{split} T_{\perp}(t) &= \frac{2}{3} T_{\perp o} \left(1 + 0.5 e^{-3t/\tau_{eff}} \right) \\ T_{\square}(t) &= \frac{2}{3} T_{\perp o} \left(1 - e^{-3t/\tau_{eff}} \right) \end{split}$$

27

Boersch Effect

See Fig 6.22 (M. Reiser)

Parallel-Plate Energy Analyzer Problem

Transverse expansion of beam causes apparently larger energy spread.

Energy Resolution Not Good (20 eV / 10 keV)

High resolution retarding-field energy analyzer

References

- 1. CERN Accelerator School (CAS) Proceedings (e.g. CERN 95-06v2.
- 2. USPAS Proceedings (e.g., USPAS 2004).
- 3. On-line Journal: Physical Review ST Accel. Beams.
- 4. H. Wiedemann, *Particle Accelerator Physics I-II* (Springer-Verlag, 1993).
- 5. Klaus Wille, *The Physics of Particle Accelerators, An Introduction* (Oxford U. Press, 2000).
- 6. P.J. Bryant and K. Johnsen, *The Principles of Circular Accelerators and Storage Rings* (Cambridge U. Press, 1993).
- Martin Reiser, *Theory and Design of Charged-Particle Beams*, 2nd Ed. (Wiley-VCH, 2008).
- 8. M.G. Minty and F. Zimmerman, *Measurement and Control of Charged particle Beams*,
- 9. Frontiers of Particle Beams; Observation, Diagnosis and Correction, Proceedings, Anacapri, Isola di Capri, Italy 1988, M. Month and S. Turner, Eds., Lecture Notes in Physics, (Springer-Verlag, 1989).
- 10. Synchrotron Radiation Sources, A Primer, Herman Winick, Ed. (World Scientific, 1994).

Power, Luminosity, Emittance, Brightness

Accelerator Examples

MACHINE	Circumf.	E or W	γ,	I _b	14		01 D
	(m)	(GeV)	Β ρ (Tm)	(A)	V _H	Yt	α, η
LHC	26658 883	7000			64 31		
p-p⁻ collider	20030,003	7000			U,UI		
TEVATRON	2 π × 10 ³	080					
p-p⁻ collider	$2\pi \times 10^{3}$	900					
RHIC	3833 845				28 10		
Au ⁷⁹⁺ collider	3833,845		81,113782		20,19		
ISR	943	31		40 DC			
p-p collider	343	51		40 00			
MGH		0 235					
p cyclotron		0.235					
UMER	11,52	10-5	1,02	0.1	6 6		
e ⁻ STR		IV ²	0,0003389	0,1	0.0		3

Coasting vs. Bunched Beams

Coasting Beams	Bunched Beams
(ISR, ISABELLE)	(e⁺e machines and modern hadron colliders: Tevatron, SPS, LHC)
Ex.: 31 GeV, 40 A p-p at ISR	Ex.: 1-100 ps bunches separated by few ns
No RF, phase displacement accel.?	RF used for bunching/acceleration
High Average Luminosity	High <i>Peak</i> Luminosity
Better for Detector	Dead Times in Detector
Large aperture b/c of large current	Smaller aperture magnets
Beam-beam effects important	Reduced beam-beam effects
Efficient stochastic cooling	Stochastic cooling harder 34

Backup Slides

Intersecting Storage Rings (ISR) "The Leap in the Hadron Collider Area"

pp collider up to 31.4 GeV /beam $2\pi R = 942$ m, injection from CPS Combined-function lattice, large $\Delta p/p$ 8 Intersection points (5 used for exp.) Constr.: 66-70, Operated:71-83

L= $4 \ge 10^{30}$ (des.) to $1.4 \ge 10^{32}$ cm⁻²s⁻¹, dc proton current: up to $40 \ge 40$ A (57A) Notable features:

- Ultra-high vacuum and ion clearing
- Low-impedance vacuum envelope
- High-stability of power supplies (10⁻⁷ ripple tolerance on dipoles)
- Superconducting low-β insertion (L increased by 6.5)

but experiments not fully exploiting it.

View of intersection point 5 in 1974

CERN Academic Training 13 September 2004, Kurt Hübner

BPM based beam energy measurement

WP 4.2 mission statement : Study & design magnetic chicane for beam energy measurement using BPMs for a future linear collider Royal Holloway University London: S. Boogert Cambridge : M. Slater, M. Thomson and D. Ward University College London: F. Gournaris, A. Lyapin, B. Maiheu, S. Malton, D. Miller and M. Wing $\delta E/E \sim 10^{-4}$ $\eta \sim 5 \text{ mm at center}$ BPM BPM BPM BPM

NanoBPM@ATF : test resolution, try different analysis methods, BPM stability tests, multi bunch operation, advanced electronics techniques, inclination of beam in BPMs.

-> spectrometer aspects of BPMs can be tested ESAOSLAC : test stability and operational issues with a full implementation of 4 magnet chicane and 3 BPM stations

-> test of chicane prototype

Beam Cooling Due to Acceleration for a beam Reiser 5.4.6 with a lot of particles

Longitudinal temperature related to *velocity spread* (though it has units of energy) for a beam :

$$k_{\rm B}T_{\rm o}/m = \left\langle v^2 \right\rangle - \left\langle v \right\rangle^2$$

 $\langle v_i \rangle = 0$

Assume no longitudinal focusing or compression, long-bunch beam

Initial:

$$v_o = \sqrt{2qV_o/m}$$

Final:

How do we calculate the 4th moment?

$$\mathbf{k}_{\mathrm{B}} \mathbf{T}_{\mathrm{I} \mathrm{f}} = \left(\left\langle \mathbf{v}_{\mathrm{i}}^{4} \right\rangle - \left(\mathbf{k}_{\mathrm{B}} \mathbf{T}_{\mathrm{I}} \right)^{2} \right) / 2q V_{\mathrm{o}}$$

Assume a half-Gaussian velocity distribution function:

$$f_i(\mathbf{v}_i) = f_o \exp\left(-\frac{m\mathbf{v}_i^2}{2\mathbf{k}_{\mathsf{B}}\mathbf{T}_{\square f_i}}\right), \qquad \mathbf{v}_i > 0$$

$$\left\langle \mathbf{v}_{i}^{4} \right\rangle = \int_{0}^{\infty} \mathbf{v}_{i}^{4} f_{i} \left(\mathbf{v}_{i} \right) d\mathbf{v}_{i}$$

$$\left(\mathbf{v}_{i} \mathbf{T}_{i} \right)^{2} \left(\mathbf{v}_{i} \mathbf{T}_{i} \right)^{2}$$

kТ –	$\left(\mathbf{K}_{B} \mathbf{I}_{\Box}\right)$	$-(\Delta E)$
r _B I _{□f} −	2qV _o	² qV _o

Same as before (p. 4)

Example

$$k_{\rm B} T_{\rm If} = \frac{\left(k_{\rm B} T_{\rm I}\right)^2}{2qV_{\rm o}} = \frac{\left(\Delta E\right)^2}{2qV_{\rm o}}$$

UMER:

at cathode: $k_BT_c = 0.1 \text{ eV}$; $V_o = 10 \text{ keV}$

 $k_{\rm B}T_{\rm f} = 5 \times 10^{-7} \, {\rm eV}$

Cooling is very severe!

<u>Note</u>: Where beam is bunched or longitudinal focusing is present, cooling is less severe.

Timescale for Relaxation

Time scale determined by collisions:

$$\tau_{\text{eff}}=1.34\tau_{\text{o}}=0.42\tau_{\text{eq}}$$

For electrons:

$$\begin{split} \tau_{eff} &= 4.44 \times 10^{20} \, \frac{\left(k_{B} T_{eff} \, \big/ mc^{2} \,\right)^{3/2}}{n ln \, \Lambda} \\ &ln \, \Lambda = ln \Bigg[5.66 \times 10^{21} \frac{\left(k_{B} T_{eff} \, \big/ mc^{2} \,\right)^{3/2}}{\sqrt{n}} \Bigg] \end{split}$$

For UMER:

$$s_{eff} = v\tau_{eff} \sim 1000 \text{ m} \sim 100 \text{ turns}$$

However: Boersch observed that even in a short distance (~ 1m), the energy spread can grow considerably!

40

UMER example again

$$v_{\perp o} / v = x'_{rms} = \epsilon/2a = 50 \text{ E-6} / (2*0.01) = 2.5 \text{ mrad}$$

 $T_{\perp o} = m\beta^2 c^2 (x'_{rms})^2 = 0.13 \text{ eV}$
 $T_{\parallel o} = 5 \text{ E-7 eV} \text{ (see p. 7)}$

After 1 m = 0.001 τ_{eff}

$$T_{\Box}(t) = \frac{2}{3} T_{\perp o} \left(1 - e^{-3t/\tau_{eff}} \right) = 0.00026$$

But using the relation on page 6:

$$\Delta E = \sqrt{2qV_ok_BT_o}$$

= $\sqrt{2(10keV)(5E-7)} = 0.1$ before relaxation
= $\sqrt{2(10keV)(0.00026)} = 2.28$ after

This is a factor 23 growth in energy spread over just 1 m !!