S-1

Specify a 1.8 m (arc length) long bending magnet that is capable to deflect a 3 GeV electron beam by an angle of $\pi / 12$. This is the deflection angle of PLS-II. Assume a full gap aperture of 34 mm . What is the total excitation current in each coil? Determine the bending radius and sagitta. How many magnets do you need to define a circular accelerator?
The deflection angle is: $\psi=\frac{\pi}{12}=\underset{\rightarrow}{\ell}=0.29979 \underset{P E}{B} \quad$ or with $\mathrm{E}=3 \mathrm{GeV}$ and $\beta \approx 1$ the magnetic field must be $B=\frac{\pi}{12} \frac{3}{0.29979 \cdot 1.8}=1.4555 \mathrm{~T}$ and the bending radius $\rho=6.8753 \mathrm{~m}$.
The coil current is $I_{\text {coil }}(\mathrm{A})=\underset{\mu_{0}}{1} B(\mathrm{~T}) G(\mathrm{~m})=\frac{1.4555 \cdot 0.017}{4 \pi 10^{7}}=19690.0$
and the sagitta: $\quad h=\rho(1-\cos \psi)=6.8753\left(1-\cos \frac{\pi}{24}\right)=5.8819 \mathrm{~cm}$
Finally, you need 24 magnets to make a ring.

S-2

A quadrupole magnet shall focus a parallel beam to a focal point 4 m away from the center of the quadrupole. The beam energy be 3 GeV . Choose a magnet length and calculate the magnetic field gradient necessary.

The focal length of the quadrupole is $\frac{1}{f}=k l=0.25 \mathrm{~m}^{-1}$.
With a magnet length of $\ell=0.20 \mathrm{~m}$ the quadrupole strength is $k=1.25 \mathrm{~m}^{-1}$
Magnet strength and gradient are related by $k\left(\mathrm{~m}^{-2}\right)=0.29979 \frac{g(\mathrm{~T} / \mathrm{m})}{\beta E(\mathrm{GeV})}$
and solving for the gradient we get $g(\mathrm{~T} / \mathrm{m})=\frac{k\left(\mathrm{~m}^{-2}\right) \beta E(\mathrm{Gev})}{0.29979}=\frac{1.2553}{0.29979}=12.509 \mathrm{~T} / \mathrm{m}$

S-3

Specify a Rf-cavity (pillbox cavity) for microwaves with a wavelength of 60 cm . What is the diameter of the pill box? How long must the cavity be if an electron at the speed of light $(v \approx c)$ is expected to travel through the cavity in one half Rf-period. Express this cavity length in units of the Rf-wavelength. What is the Rf-frequency?

The cavity radius is given by the first root of the Bessel's function $J_{0}(k r)$, which is at $k r=2.405$ or at $r_{\text {wall }}=2.405 \lambda /(2 \pi)$. Numerically, the cavity wall must be at $r_{\text {wall }}=\frac{2.405}{2 \cdot \pi} 0.6=0.22966 \mathrm{~m}$ and the cavity diameter is $D=0.45932 \mathrm{~m}$.

The Rf-period is $\tau=\frac{\lambda}{c}=\frac{0.6}{2.9979 \cdot 10^{8}}=2.0014 \mathrm{nsec}$ and the electron travels during a half period the distance of $\lambda / 2$.
therefore the length of the cavity is one half wavelength long. If it were any longer, the particle would see some negative fields.
The Rf-frequency is $f=\frac{1}{\tau}=\frac{1}{2.0014 \cdot 10^{-9}}=499.65 \mathrm{MHz}$

Useful vector relations

$$
\begin{aligned}
& \nabla(\mathbf{a} \varphi)=\varphi \nabla \mathbf{a}+\mathbf{a} \nabla \varphi \\
& \nabla \times(\mathbf{a} \varphi)=\varphi(\nabla \times \mathbf{a})-\mathbf{a} \times \nabla \varphi \\
& \nabla(\mathbf{a} \times \mathbf{b})=\mathbf{b}(\nabla \times \mathbf{a})-\mathbf{a}(\nabla \times \mathbf{b}) \\
& \nabla \times(\mathbf{a} \times \mathbf{b})=(\mathbf{b} \nabla) \mathbf{a}-(\mathbf{a} \nabla) \mathbf{b}+\mathbf{a}(\nabla \mathbf{b})-\mathbf{b}(\nabla \mathbf{a}) \\
& \nabla(\mathbf{a b})=(\mathbf{b} \nabla) \mathbf{a}+(\mathbf{a} \nabla) \mathbf{b}+\mathbf{a} \times(\nabla \times \mathbf{b})+\mathbf{b} \times(\nabla \times \mathbf{a}) \\
& \nabla \times(\nabla \varphi)=0 \\
& \nabla(\nabla \times \mathbf{a})=0 \\
& \nabla \times(\nabla \times \mathbf{a})=\nabla(\nabla \mathbf{a})-\Delta \mathbf{a} \\
& \mathbf{a}(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{c} \times \mathbf{a})=\mathbf{c}(\mathbf{a} \times \mathbf{b}) \\
& \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a c})-\mathbf{c}(\mathbf{a b}) \\
&(\mathbf{a} \times \mathbf{b})(\mathbf{c} \times \mathbf{d})=(\mathbf{a c})(\mathbf{b d})-(\mathbf{b c})(\mathbf{a d}) \\
& \mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})+\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=0 \\
&(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=\mathbf{c}[(\mathbf{a} \times \mathbf{b}) \mathbf{d}]-\mathbf{d}[(\mathbf{a} \times \mathbf{b}) \mathbf{c}]
\end{aligned}
$$

Integral Relations

$$
\begin{gathered}
\int_{V} \nabla \varphi \mathrm{dr}=\oint_{S} \varphi \hat{\mathbf{u}} \mathrm{~d} \sigma \\
\int_{V} \nabla \boldsymbol{a} \mathrm{~d} \boldsymbol{r}^{3}=\oint_{S} \boldsymbol{a} \hat{\boldsymbol{u}} \mathrm{~d} \boldsymbol{\sigma} \\
\text { Gauss' Law } \\
\int_{S}(\nabla \times \boldsymbol{a}) \hat{\boldsymbol{u}} \mathrm{d} \boldsymbol{\sigma}=\oint \boldsymbol{a} \mathrm{d} \boldsymbol{\sigma} \quad \text { Stoke’s Law }
\end{gathered}
$$

Cylindrical coordinates

$$
(\rho, \varphi, z) \quad \text { transformation: } \quad \begin{aligned}
(x, y, z) & =(\rho \cos \varphi, \rho \sin \varphi, z) \\
\mathrm{d} s^{2} & =\mathrm{d} \rho^{2}+\rho^{2} \mathrm{~d} \varphi^{2}+\mathrm{d} z^{2} \\
\mathrm{~d} V & =\rho \mathrm{d} \rho \mathrm{~d} \varphi \mathrm{~d} z
\end{aligned}
$$

vector expressions

$$
\begin{aligned}
\nabla \phi & =\left[\frac{\partial \phi}{\partial \rho}, \frac{1}{\rho} \frac{\partial \phi}{\partial \varphi}, \frac{\partial \phi}{\partial z}\right] \\
\nabla \mathbf{a} & =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho a_{\rho}\right)+\frac{1}{\rho} \frac{\partial a_{\varphi}}{\partial \varphi}+\frac{\partial a_{z}}{\partial z} \\
\nabla \times \mathbf{a} & =\left[\frac{1}{\rho} \frac{\partial a_{z}}{\partial \varphi}-\frac{\partial a_{\varphi}}{\partial z}, \frac{\partial a_{\rho}}{\partial z}-\frac{\partial a_{z}}{\partial \rho}, \frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho a_{\varphi}\right)-\frac{1}{\rho} \frac{\partial a_{\rho}}{\partial \varphi}\right] \\
\Delta \phi & =\frac{\partial^{2} \phi}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \phi}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} \phi}{\partial \varphi^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}
\end{aligned}
$$

Polar coordinates

(r, φ, θ)

$$
\begin{aligned}
& \nabla \phi=\left[\frac{\partial \phi}{\partial r}, \frac{1}{r} \frac{\partial \phi}{\partial \varphi}, \frac{1}{r \sin \theta} \frac{\partial \phi}{\partial \theta},\right] \\
& \nabla \mathbf{a}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} a_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}\left(\sin \varphi a_{\varphi}\right)+\frac{1}{r \sin \theta} \frac{\partial a_{\theta}}{\partial \theta} \\
& \nabla \times \mathbf{a}=\left[\begin{array}{c}
\frac{1}{r \sin \theta}\left(\frac{\partial\left(\sin \theta a_{\zeta}\right)}{\partial \varphi}-\frac{\partial a_{\varphi}}{\partial \theta}\right), \\
\frac{1}{r \sin \theta}\left(\frac{\partial a_{r}}{\partial \theta}-\sin \theta \frac{\partial\left(r a_{\theta}\right)}{\partial r}\right), \\
\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r a_{\varphi}\right)-\frac{\partial a_{r}}{\partial \varphi}\right) .
\end{array}\right] \\
& \Delta \phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \phi}{\partial \varphi^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \phi}{\partial \theta}\right)
\end{aligned}
$$

transformation: $(x, y, z)=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta)$

$$
\begin{aligned}
\mathrm{d} s^{2} & =\mathrm{d} r^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \varphi^{2}+r^{2} \mathrm{~d} \theta^{2} \\
\mathrm{~d} V & =r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \varphi \mathrm{~d} \theta
\end{aligned}
$$

