The MICE Experiment

Dr. Linda R. Coney University of California, Riverside

April 1, 2009

Outline

Introduction

- What is MICE?
 - Beamline
 - What we have now
 - What we will have in time
- Diagnostics for MICE
 - Detectors
 - TOF
 - Tracker
 - CKOV
- Conclusions

Future Neutrino Beams: Neutrino Factory

- Create an intense beam of neutrinos from the decay of a stored muon beam:
 - Beam composition known precisely
 - Energy spectrum known and tuneable
 - Flux of neutrinos determined from muon current in storage ring
 - Produce beams of neutrinos 1000 times more intense than conventional beams
 - A wide variety of possible oscillation channels can be studied.
 - Conventional Neutrino physics can be done close to the Factory with vastly increased statistics.

Neutrino Factory

Challenges:

- High intensity proton source
- Complex target
- Want to accelerate muon beam
 - Stem from decay of pions
 - Large phase space
 - \rightarrow ie. High emittance
 - → need to cool (shrink) beam

What do we need?

MICE Proof of ionization cooling

Detector designs

Neutrino Factory at RAL

Muon Cooling

- Muons captured from pion decay form a beam with a large size and divergence.
- In order to accelerate this beam, it is necessary to shrink the beam (cooling).
- Conventional beam cooling techniques require a relatively long amount of time (compared to the 2 µs life-time of a muon)
- A new solution is required...

Ionisation Cooling

- 1. Beam passes through absorber and loses energy/momentum.
- 2. Multiple scattering will result in a change in the angle of the particle, but not the total momentum
- 3. Re-acceleration with an RF cavity restores the longitudinal momentum, but not the transverse component: transverse cooling!

Goals:

 To measure the muon into and out of the cooling channel and measure a 10% reduction in emittance of the beam with a precision of 0.1%, and experimentally demonstrate ionization cooling

MICE: Current Status

The MICE Stages

Experiment designed to grow with each step providing important information

MICE Diagnostics

Use a combination of "traditional" diagnostics and detectors from particle physics

- Traditional
 - Beam losses from ISIS
- Detectors from particle physics
 - TOF

 - Tracker
 - Calorimeter

Traditional Diagnostics

- Need to know what target is doing
 - Beam losses
 - Target depth
 - Target dip timing
 - Are we affecting ISIS?
 - How many particles are we getting down our beamline?

Target Information

Live ISIS Beam Loss plots into MLCR

 Took data to study beam losses in ISIS as function of MICE target operation

New Target DAQ info into MLCR

 ISIS beam intensity, Total Beam Loss, Sector 7, Sector 8

FNAL Beam Monitors

- Two beam profile monitors installed in the MICE beamline
- Scintillating fiber detectors made of 0.9 mm diameter fibers in doublet planes with a 1.08 mm pitch and read out with Burle multianode PMTs.
- The active area of the two detectors covers 20x20 cm and 45x45 cm with doublets in both x and y giving a two dimensional profile of the MICE beam.

FNAL Beam Monitors

Two dimensional beam profile information

MICE Diagnostics: Particle Physics Detectors

Particle identification

- TOF
- CKOV
- Calorimeter
- Particle tracking
 - Scintillating Fiber trackers
 - Measure position and reconstruct momentum

PID DETECTORS

- Upstream Time of Flight TOF0 + TOF1 Aerogel Cerenkov
- $\rightarrow \pi/\mu$ separation

Downstream TOF2 + Calorimeter $\rightarrow \mu / e$ separation

Up + Downstream TOFs→ RF phase of muons (50ps timing)

TOF & Calorimeter components

PID Detectors: TOF & CKOV

TOF

- 2 planes of 1 inch orthogonal scintillator slabs in x and y
- Read out by fast PMT
- used to identify protons, pions, electrons and especially muons

CKOV

- Threshold, aerogel
- Used to ID electrons

Figure 3: Amplitude histograms from the Cherekov counters. Top four histograms correspond to CKOVa. Bottom four histograms correspond to CKOVb.

Figure 1: Vertical (left) and horizontal (right) profiles in TOF0 obtained from online monitoring histogram at 300 MeV/c (top) and 100 MeV/c (bottom). The beam can be considered as centred at both momenta.

SCI-FI TRACKER

Low mass Sci-Fi tracker inside solenoid

5 planes x 3 views 350 micron fibres + VLPC readout Cosmic ray tests with trackers Light yield ~10pe Data used as input to simulations

MICE Tracker

Scintillating fiber tracker

- Reduce transverse emittance by 10%
- Trackers need to measure this reduction to 0.1% precision
- High resolution on order of 1 fiber needed

Sits inside 4 T solenoid magnet ~1m long with 5 SC coils

MICE Tracker

- MICE requires two identical trackers to measure each muon individually as it enters and exits the cooling channel.
- Tracker needs to safely operate next to the liquid Hydrogen absorbers and in the presence of the strong background (RF and X-rays/conversions) from the RF cavities.
- Solution: Scintillating Fibres readout with Visible Light Photon Counters (VLPCs).

A MICE Tracker

Fibre Plane (Doublet/Ribbon)

350 μm scintillating fibres are arranged in two overlapping rows to form a sheet of fibre.
Active area has a diameter of 30 cm.
Small fibre minimises radiation length in direction of muon passage.

Tracker Design

- Each tracker has five measurement stations
- A station consists of 3 planes
- Each plane has over 1400 fibres.
- Light from groups of seven neighbouring fibres are read out on a single VLPC channel.

a)

VLPCs

Counts Entries 100D 200.6 Mean 300 RMS 132.2 χ²/ndf482.2 / 410 P1 $59.44 \pm$ 0.1145 250 Ρ2 $177.2 \pm$ 0.2189 P3 $298.3 \pm$ D.4334 200 P4 419.B± 1.196 P5 $683.7\,\pm$ 10.27 P6 $397.0 \pm$ 5,720 150 P7 $164.0 \pm$ 2.869 P8 $55.87 \pm$ 1.856 P9 8.784 ± 0.8240E-01 100 P10 $18.04 \pm$ 0.1730 P11 0.3290 $24.88 \pm$ 50 P12 $28.92 \pm$ 1.151 ø 100 200 300 400 500 600 200 800 ADC channel SIGNAL

> Operate at 9K
> High QE
> Low noise
> High rate

Prototype Performance

Most probable light yield: 10.0 ~ 10.5 P.E. Expectation based on D0 experience ~10 > Resolution: 442 \pm 4 (stat) \pm 27 (syst) μ m \geq Expectation from fibre geometry: 424 – 465 µm (single fibre bunch or two fibre bunch) > Single Plane Efficiency: $(99.7 \pm 0.2)\%$ Poisson expectation for 10 P.E. signal 99.7% Dead channels: 0.2% (two channels) ≻0.25% assumed in G4MICE simulation based on **D0** experience

Conclusions

 Many different types of detectors used to understand the experiment
 Come see what we've got in person!

Emittance

Each spectrometer measures 6 parameters per particle × y t ×' = d×/dz = P_×/P_z y' = dy/dz = P_y/P_z t' = dt/dz = E/P_z

Determines, for an ensemble (sample) of N particles, the moments: Averages <x> <y> etc... Second moments: variance(x) $\sigma_x^2 = \langle x^2 - \langle x \rangle^2 \rangle$ etc... covariance(x) $\sigma_{xy} = \langle x.y - \langle x \rangle \langle y \rangle \rangle$

 $\begin{array}{l} \text{Covariance matrix} \\ M = \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{xt} & \sigma_{xx'} & \sigma_{xy'} & \sigma_{xt'} \\ \cdots & \sigma_{y}^{2} & \cdots & \cdots & \sigma_{yt'} \\ \cdots & \cdots & \sigma_{t}^{2} & \cdots & \cdots & \sigma_{tt'} \\ \cdots & \cdots & \cdots & \sigma_{x'}^{2} & \cdots & \sigma_{x't'} \\ \cdots & \cdots & \cdots & \cdots & \sigma_{y'}^{2} & \sigma_{y't'} \\ \cdots & \cdots & \cdots & \cdots & \sigma_{t'}^{2} \end{pmatrix} \\ \\ \text{Evaluate emittance with:} \quad \begin{array}{l} \epsilon^{6D} = \sqrt{\det(\mathbf{M}_{xyx'y't'})} \\ \epsilon^{4D} = \sqrt{\det(\mathbf{M}_{xyx'y'})} = \epsilon_{\perp}^{2} \end{array} \end{array} \begin{array}{l} \text{Getting at e.g. } \sigma_{x't'} \\ \text{is essentially impossible with multiparticle bunch measurements} \end{array}$

Tracker2 Readout System

- Two cryostats
 - Each powered by new Wiener power supply
- Each cryostat has 2 VLPC cassettes
- Each VLPC cassette has 2 AFE IIt boards
 - → total of 8 AFE boards
- In rack:
 - 9 VLSB modules: 1 master to control timing and 8 slaves (one for each AFE board)
 - 1553 module: controls AFE initialization, bias voltage controls, temp controls, data taking
 - Fanout: sends correct timing signal to all AFE boards

• Goals:

- characterize VLPC cassettes
- get everything working correctly together in layout to be used at RAL

COOLING

X

Area = ε

at a focus

- Accelerators have limited acceptance in phase space
- Muon beams from pion decay occupy large volume of p.s.
 - wide $\sigma_x \sim 10 \text{ cm}$
 - divergent $\sigma_{\theta} \sim 150$ + mr
 - *i.e.* have large normalised emittance, \mathcal{E}_n

$$\ln 2D \qquad \varepsilon_n = \frac{1}{m_{\mu}c} (\sigma_x^2 \sigma_{p_x}^2 - \sigma_{xp_x}^2)^{\frac{1}{2}} \rightarrow \beta \gamma \sigma_x \sigma_{\vartheta}$$

- $\varepsilon_n \sim 15 20 \ (\pi) \text{ mm-rad}$ initially
- Cooling = reduce emittance → 2 10 x number of μ into accelerator
 Highly advantageous for a NF & essential for muon collider
- Finite muon lifetime → conventional cooling (e.g. stochastic) too slow
- *Ionisation cooling* the only practical possibility

MICE PPRP Sept 2006

IONISATION COOLING

- Pass muons of ~200 MeV/c through
 - absorbers \rightarrow reduce p_t and p_l
 - RF replaces p_l
 - ➔ beam 'cooled'
- Emittance decreases exponentially:

$$\frac{d\varepsilon_n}{dX} = \frac{-\varepsilon_n}{\beta^2 E} \left\langle \frac{dE}{dX} \right\rangle + \frac{\beta_t \left(0.014 \text{ GeV} \right)^2}{2\beta^3 E m_\mu X_0}$$

- < dE/dX > versus scattering (X_0)
- \rightarrow low Z absorber material
- \rightarrow tight focus (low β function)
- Figure of Merit = $X_0 < dE/dX >$
- \rightarrow H₂ is best absorber material

MICE PPRP Sept 2006

Absorber RF Cavities

	Z	FoM	Rel. 4D cooling
н	1	252.6	1.000
Не	2	182.9	0.524
Li	3	130.8	0.268
С	6	76.0	0.091
ΑΙ	13	38.8	0.024

5% momentum loss in each absorber \rightarrow 15% cooling for large \mathcal{E} beam

Equilibrium emittance for H₂ $\varepsilon_0 \sim 2.5 \ (\pi)$ mm-radians (acceptance of accelerators in NF 15 – 30 (π) mm-radians)

 \rightarrow Measure $\Delta \varepsilon$ to 1%

MICE PPRP Sept 2006