

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- > Consideration for capacitive button BPM
- ➤ Other BPM principles: stripline → traveling wave inductive → wall current cavity → resonator for dipole mode
- > Electronics for position evaluation
- > Some examples for position evaluation and other applications
- > Summary

Stripline BPM: General Idea

For short bunches, the *capacitive* button deforms the signal

- \rightarrow Relativistic beam $\beta \approx l \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

IS ST II

For relativistic beam with $\beta \approx l$ and short bunches:

 \rightarrow Bunch's electro-magnetic field induces a traveling pulse at the strip

 \rightarrow Assumption: $l_{bunch} << l$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$ Signal treatment at upstream port 1:

t=0: Beam induced charges at port 1: \rightarrow half to R_1 , half toward port 2

t=l/c: Beam induced charges at **port 2**: \rightarrow half to R_2 , **but** due to different sign, it cancels with the signal from **port 1** \rightarrow half signal reflected

t=2·*l*/*c*: reflected signal reaches **port 1**

$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

If beam repetition time equals $2 \cdot l/c$: reflected preceding port 2 signal cancels the new one: \rightarrow no net signal at **port 1**

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

3

IS IS II

Stripline BPM: Transfer Impedance

The signal from port 1 and the reflection from port 2 can cancel \Rightarrow minima in Z_t For short bunches $I_{beam}(t) \rightarrow Ne \cdot \delta(t)$: $Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$

➤ Z_t show maximum at $l=c/4f=\lambda/4$ i.e. 'quarter wave coupler' for bunch train ⇒ l has to be matched to v_{beam}

> No signal for $l=c/2f=\lambda/2$ i.e. destructive interference with subsequent bunch

Around maximum of $|Z_t|$: phase shift $\varphi = 0$ i.e. direct image of bunch

 $f_{center} = 1/4 \cdot c/l \cdot (2n-1)$. For first lope: $f_{low} = 1/2 \cdot f_{center}$, $f_{high} = 3/2 \cdot f_{center}$ i.e. bandwidth $\approx 1/2 \cdot f_{center}$

> Precise matching at feed-through required t o preserve 50 Ω matching.

FG 55 11

Stripline BPM: Finite Bunch Length

→ If total bunch is too long $(\pm 3\sigma_t > l)$ destructive interference leads to signal damping *Cure:* length of stripline has to be matched to bunch length

5

G 55 1

2-dim Model for Stripline BPM

'Proximity effect': larger signal for closer plate
2-dim case: Cylindrical pipe → image current density:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current of finite BPM size: $I_{im} = a \cdot \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$

Impedance Z_{strip} =50 Ω : Comparable formula as for PCB micro-strip \rightarrow dependence on *d* and α

6 5 1

Realization of Stripline BPM

20 cm stripline BPM at TTF2 (chamber Ø34mm) And 12 cm LHC type:

From . S. Wilkins, D. Nölle (DESY), C. Boccard (CERN)

Comparison: Stripline and Button BPM (simplified)

	Stripline	Button	
Idea	traveling wave	electro-static	
Requirement	Careful Z_{strip} =50 Ω matching		
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance	
Bandwidth	Broadband, but minima	Highpass, but <i>f_{cut}<1 GHz</i>	
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <Ø3cm, to prevent signal deformation	
Mechanics	Complex	Simple	
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion	
Directivity	YES	No	

TTF2 BPM inside quadrupole

From . S. Wilkins, D. Nölle (DESY)

GSI

Broadband observation of bunches can be performed with a resistive Wall Current Monitor

Principle: \blacktriangleright Ceramic gap bridged with *n*=10...100 resistors of *R*=10...100 Ω

- Measurement of voltage drop for $R_{tot} = 1/n \cdot R = 1...10 \Omega$
- Ferrit rings with high \rightarrow forces low frequency components through *R*

Inductive Wall Current Monitor

The wall current is passed through strips and is determined be transformers.

10

P. Forck et al., DITANET School April 2009

Cavity BPM

High resolution on µs time scale can be achieved by excitation of a dipole mode:

11

P. Forck et al., DITANET School April 2009

Beam Position Monitors: Principle and Realization

Cavity BPM

Comparison of BPM Types (simplified)

Remark: Other types are also some time used, e.g. inductive antenna based, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- Consideration for capacitive shoe box BPM
- **Consideration for capacitive button BPM**
- ➤ Other BPM principles: stripline → traveling wave

inductive \rightarrow wall current

cavity \rightarrow *resonator for dipole mode*

> Electronics for position evaluation

Noise consideration, broadband and narrowband analog processing, digital processing

Some examples for position evaluation and other applications

> Summary

Characteristics for Position Measurement

Position sensitivity: Factor between beam position & signal quantity $(\Delta U/\Sigma U \text{ or } \log U_1/U_2)$ defined as $S_x(x, y, f) = \frac{d}{dx} (\Delta U_x / \Sigma U_x) = [\%/\text{mm}]$

Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position')

➢ influenced by mechanical tolerances and alignment accuracy and reproducibility

➢ by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation ('relative position')

→ typically: *single bunch*: 10^{-3} of aperture ≈ 100 µm

averaged: 10^{-5} of aperture $\approx 1 \,\mu\text{m}$, with dedicated methods $\approx 0.1 \,\mu\text{m}$

➤ in most case much better than accuracy!

electronics has to match the requirements e.g. bandwidth, ADC granularity...

Bandwidth: Frequency range available for measurement

➢ has to be chosen with respect to required resolution via analog or digital filtering **Dynamic range:** Range of beam currents the system has to respond

position reading should not depend on input amplitude

Signal-to-noise: Ratio of wanted signal to unwanted background

➢ influenced by thermal and circuit noise, electronic interference

➤ can be matched by bandwidth limitation

Signal sensitivity = detection threshold: minimum beam current for measurement

General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Position information from voltage difference: $x = 1 / S \cdot \Delta U / \Sigma U$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- \Rightarrow Signal-to-noise $\Delta U_{im}/U_{eff}$ is influenced by:
- Input signal amplitude
 - \rightarrow large or matched Z_t
- > Thermal noise at $R=50\Omega$ for T=300K(for shoe box $R=1k\Omega \dots 1M\Omega$)
- \succ Bandwidth Δf

 \Rightarrow Restriction of frequency width because the power is concentrated on the harmonics of f_{rf}

Remark: Additional contribution by non-perfect electronics typically a factor 2 Moreover, pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

Example for Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$
- 3. Signal-to-noise ratio has to be calculated and expressed in spatial resolution $\boldsymbol{\sigma}$

Example: button BPM resolution at Synchrotron Light Source SLS at PSI: Power Level [dBm]

Bandwidth: Turn-by turn = 500 kHz Ramp 250 ms = 15 kHz Closed orbit = 2 kHz

Result:

- Slow readout $\Leftrightarrow \text{low } \Delta f$ $\Rightarrow \text{low } \sigma \text{ due to } \sigma \propto \sqrt{\Delta f}$
- ➤ Low current ⇔ low signal
 - \Rightarrow input noise dominates

From V. Schlott et al. (PSI) DIPAC 2001, p. 69

IG 55 H

Comparison: Filtered Signal \leftrightarrow Single Turn

Example GSI Synchr.: U^{73+} , $E_{inj}=11.5$ MeV/u $\rightarrow 250$ MeV/u within 0.5 s, 10^9 ions

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination

IG 55 H

General Idea: Broadband Processing

> Hybrid or transformer close to beam pipe for analog $\Delta U \& \Sigma U$ generation or $U_{left} \& U_{right}$

- Attenuator/amplifier
- Filter to get the wanted harmonics and to suppress stray signals
- > ADC: digitalization \rightarrow followed by calculation of of $\Delta U / \Sigma U$

Advantage: Bunch-by-bunch possible, versatile post-processing possible

Disadvantage: Resolution down to $\approx 100 \ \mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture,

resolution is worse than narrowband processing

FE 55 1

Linear Amplifier with large dynamic Range for p-Synchrotron

Shoe box BPM \rightarrow matching 2:12 transformer $R_{prim}=1.8k\Omega \rightarrow \approx 3$ m cable \rightarrow amplifier

- ➤ Requirement: Dynamic range from 1×10^8 to 4×10^{13} charges per bunch ⇒ 120dB dynamic range of signal amplitude
- Switchable 35dB amplifier stages, bandwidth 0.2 to 100 MHz.
- ➤ Variable PIN-diode attenuator -5dB...-35dB.
- > Test generator input for control of constant gain and temperature drift calibration
- Common mode gain matching better than 0.1dB each BPM-plate pair for large accuracy

General Idea: Narrowband Processing

Narrowband processing equals heterodyne receiver (e.g. AM-radio or spectrum analyzer)

- Attenuator/amplifier
- > Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- → ADC: digitalization → followed calculation of $\Delta U/\Sigma U$

Advantage: spatial resolution about 100 time better than broadband processing.

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

For non-relativistic p-synchrotron: \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Narrowband Processing with Multiplexing

Idea: narrowband processing, all buttons at same path \Rightarrow multiplexing of single electronics chain Multiplexing within ≈ 0.1 ms: \Rightarrow only one button is processed \Rightarrow minimal drifts contribution

Processing chain: Buttons \rightarrow multiplexer \rightarrow linear amplifier with fine gain steps by AGC

 \rightarrow mixing with $f_{rf} \rightarrow$ narrow intermediate frequency filter BW 0.11 MHz

 \rightarrow synchronous detector for rectification \rightarrow de-multiplexer \rightarrow slow and precise ADC

Advantage: High accuracy, high resolution, high dynamic range by automated gain control AGC **Disadvantage:** Multiplexing \Rightarrow only for stable beams >> 10 ms, narrowband \Rightarrow no turn-by-turn **Remark:** 'Stable' beam e.g. at synch. light source, but not at accelerating synchrotrons!

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of heterodyne receiver

- Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier&filter or mixing unit
- Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Stable operation, flexible adoption without hardware modification **Disadvantage of DSP:** non, good engineering skill requires for development, expensive

FE 55 1

Digital Signal Processing Realization

Analog multiplexing and filtering
 Digital corrections and data reduction on FPGA
 Commercially available electronics
 used at many synchrotron light sources

GST

LIBERA Digital BPM Readout: Analog Part and Digitalization

 f_{rf} =352 or 500 MHz, revolution $f_{rev} \approx 1$ MHz

LIBERA Digital BPM Readout: Digital Signal Processing

Remark: For p-synchrotrons direct 'baseband' digitalization with 125 MS/s due to f_{rf} <10 MHz

P. Forck et al., DITANET School April 2009

Typical acc. frequency f_{rf} =500 MHz \leftrightarrow ADC sampling typ. 125 MSa/s with 14 bit \Rightarrow not every bunch is sampled i.e. **undersampling** However, reconstruction of periodic signal by sampling $f_{sample} = \frac{4}{4n+1} \cdot f_{rf}$ with n = 1,2,...

Plotted example: f_{rf} =100 MHz \Rightarrow f_{sample} = 4/5 \cdot f_{rf} = 80 MHz

 \rightarrow periodicity: four samples over five bunches

Remark: Digital broadcasting is based on undersampling and digital signal processing.

G 55 1

Comparison of BPM Readout Electronics (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Log-amp	all	Bunch train >10µs	Robust electronics High dynamics Good for industrial appl.	No bunch-by-bunch Possible drifts (dc, Temp.) Medium accuracy
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Narrowband +Multiplexing	all synchr.	Stable beams >10ms	Highest resolution	No turn-by-turn, complex Only for stable storage
Digital Signal Processing	all	Several bunches ADC 125 MS/s	Very flexible High resolution Trendsetting technology for future demands	Limited time resolution by ADC \rightarrow undersampling (complex or expensive)

GSI

Remark: Calibration of BPM Center by k-Modulation

The **accuracy** can be improved by 'k-modulation' →alignment of the BPM with respect to the axis of the quadrupoles

Beam Position Monitors: Detector Principle, Hardware and Electronics

Outline:

- ➢ Signal generation → transfer impedance
- > Consideration for capacitive shoe box BPM
- **Consideration for capacitive button BPM**
- ➤ Other BPM principles: stripline → traveling wave

inductive \rightarrow wall current

cavity \rightarrow *resonator for dipole mode*

- Electronics for position evaluation
- Some examples for position evaluation and other applications closed orbit, tune, bunch capture, energy at LINAC
 Summary

Close Orbit Measurement

Detected position on a analog narrowband basis \rightarrow closed orbit with ms time steps *Example from GSI-Synchrotron:*

Tune Measurement by gentle wideband Excitation

Detecting the bunch position on a **turn-by-turn** basis the tune can be determined: Fourier transformation of position data

 \rightarrow tune within 2048 turns corresponding \approx 5 ms time resolution

Low Current Measurement on a relative Basis

The sensitivity of a BPM Σ -signal by narrowband processing is higher as for a dc-transformer (with $\approx 1 \mu A$ on 1 kHz bandwidth). Sum-Signal after mixing with f_{rf} : I_{beam}>10 nA on 1 kHz bandwidth

But:

- Only for bunched beams
- Only relative measurement:
- \rightarrow Signal strength depend on bunch shape i.e. frequency component!

Beam parameter: U⁷³⁺,

11 MeV/u \rightarrow 1 GeV/u

GSI

Example for longitudinal Bunch Shape Observation

Example: After multi-turn injection, the **bunch formation** is critical to avoid coherent synchrotron oscillations \rightarrow emittance enlargement

P. Forck et al., DITANET School April 2009

Beam Position Monitors: Principle and Realization

BPM for Energy Determination

Important tool for rf-phase and amplitude alignment:

P. Forck et al., DITANET School April 2009

With BPMs the center in the transverse plane is determined for bunched beams. Beam \rightarrow detector coupling is given by transfer imp. $Z_t(\omega) \Rightarrow$ signal estimation $I_{beam} \rightarrow U_{im}$ **Different type of BPM:**

Shoe box = linear cut: for p-synchrotrons with $f_{rf} < 10 \text{ MHz}$

Advantage: very linear. **Disadvantage:** complex mechanics **Button:** Most frequently used at all accelerators, best for f_{rf} >10 MHz

Advantage: compact mechanics. **Disadvantage:** non-linear, low signal **Stripline:** Taking traveling wave behavior into account, best for short bunches

Advantage: precise signal. **Disadvantage:** Complex mechanics for 50 Ω , non-linear **Cavity BPM**: dipole mode excitation \rightarrow high resolution $1\mu m@1\mu s \leftrightarrow$ spatial application

Electronics used for BPMs:

Thank you for your attention !

Basics: Resolution in space ↔ resolution in time i.e. the bandwidth has to match the application
Broadband processing: Full information available, but lower resolution, for fast feedback
Log-amp: robust electronics, high dynamics, but less precise
Analog narrowband processing: high resolution, but not for fast beam variation
Digital processing: very flexible, but limited ADC speed, more complex → state-of-the-art

Proceedings related to this talk:

P. Forck et al., Proc. *CAS on Beam Diagnostics*, Dourdon, to be published (2009), available also at www-bd.gsi.de/uploads/paper/cas_bpm_main.pdf

General descriptions of BPM technologies:

[1] R.E. Shafer, *Proc. Beam Instr. Workshop BIW 89*, Upton, p. 26, available e.g. at www.bergoz.com/products/MX-BPM/MX-BPM-downloads/files/Shafer-BPM.pdf (1989).

[2] S.R. Smith, Proc. Beam Instr. Workshop BIW 96, Argonne AIP 390, p. 50 (1996).

[3] G.R. Lambertson, *Electromagnetic Detectors*, Proc. Anacapri, Lecture Notes in Physics 343, Springer-Verlag, p. 380 (1988).

[4] E. Schulte, in Beam Instrumentation, CERN-PE-ED 001-92, Nov. 1994 p. 129 (1994).

[5] D.P. McGinnis, Proc. Beam Instr. Workshop BIW 94, Vancouver, p. 64 (1994).

[6] J.M. Byrd, Bunched Beam Signals in the time and frequency domain, in *Proceeding of the School on Beam Measurement*, Montreux, p. 233 World Scientific Singapore (1999).

[7] J. Hinkson, ALS Beam Instrumentation, available e.g. at <u>www.bergoz.com/products/MXBPM/MX-BPM-downloads/files/Hinkson-BPM.pdf</u> (2000).

[8] D. McGinnis, Proc. PAC 99, New York, p. 1713 (1999).

[9] R. Lorenz, Proc. Beam Instr. Workshop BIW 98, Stanford AIP 451, p. 53 (1998).

FE 55 1