Beam Instrumentation Needs for the CLIC Main Linac

D. Schulte

- Emittance preservation target and lattice design
- Static imperfections, BPM accuray and precision, wakemonitors
- Dynamic imperfections, BPM resolution
- RF jitter, phase and amplitude measurements
- Other

June 2009

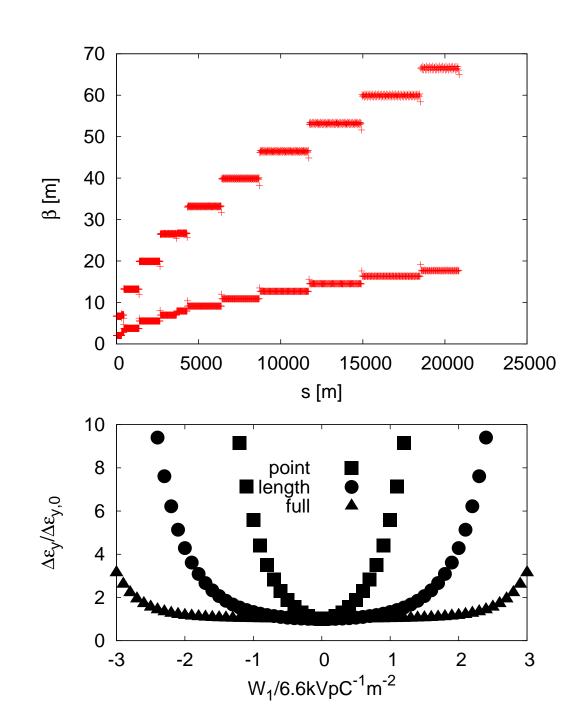
Low Emittance Transport Challenges

- Main linac is a most important source of emittance growth, is closely linked to the technology and imperfections have been studied in some detail
 - it is anticipated that we will not allow for tighter specifications elsewhere
 - but remains to be confirmed
- Static imperfections

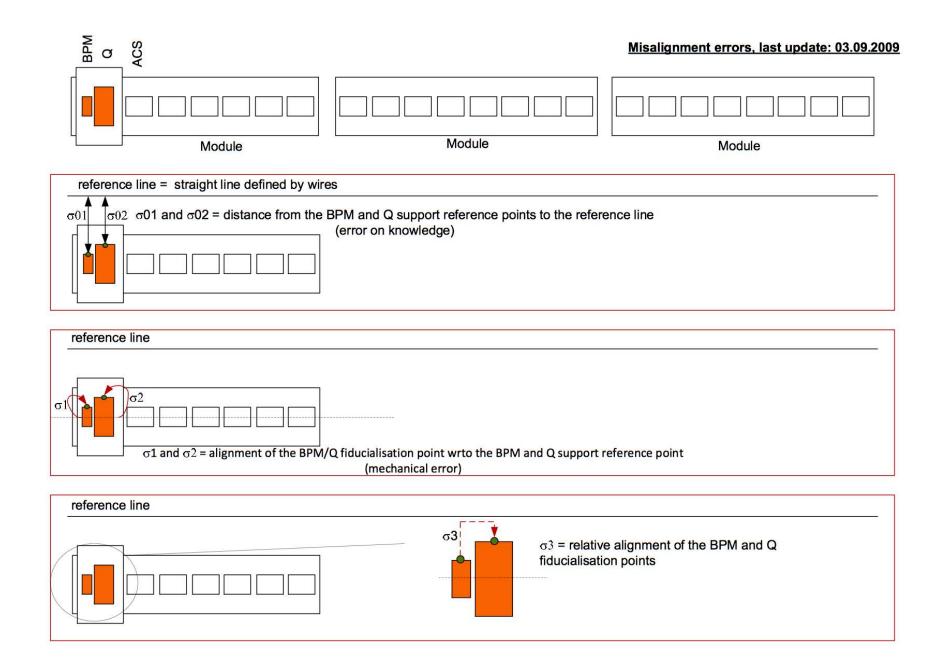
```
errors of reference line, elements to reference line, elements...

pre-alignment, lattice design, beam-based alignment, beam-based tuning
```

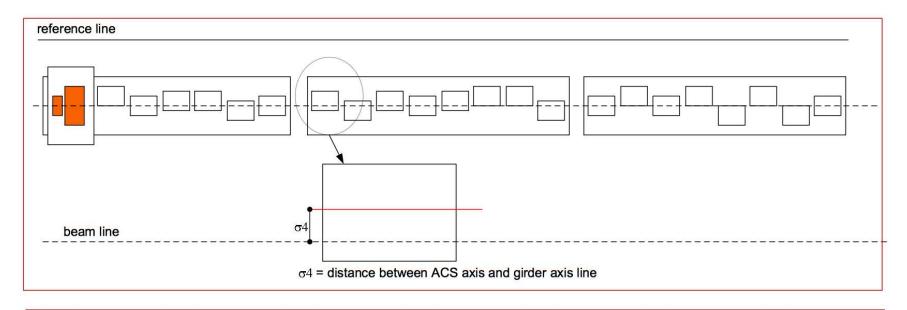
• Dynamic imperfections

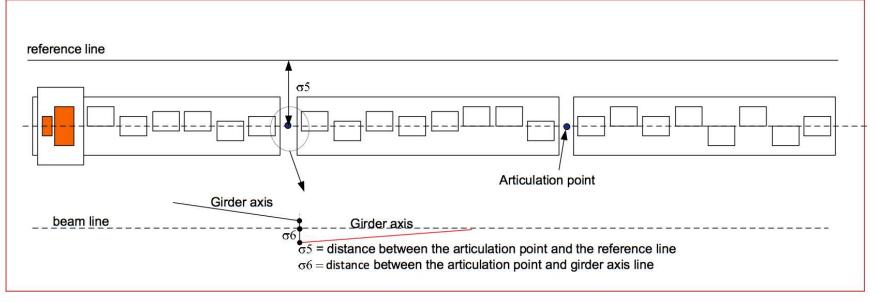

```
element jitter, RF jitter, ground motion, beam jitter, electronic noise,...

lattice design, BNS damping, component stabilisation, feedback, re-tuning, realignment
```

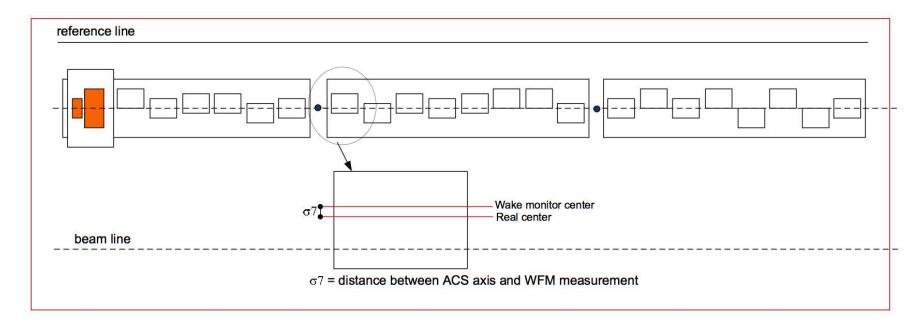

- Vertical main linac emittance budget
 - $\Delta \epsilon_y \leq 5 \, \mathrm{nm}$ for dynamic imperfections
 - $\Delta \epsilon_y \leq 5 \, \mathrm{nm}$ for static imperfections (90% probability)
 - horizontal budget 6 times larger (→ tolerances 2.5 times larger)

Lattice Design


- Used $\beta \propto \sqrt{E}$, $\Delta \Phi = \mathrm{const}$
 - balances wakes and dispersion
 - roughly constant fill factor
- Total length about 21 km
 - 2010 BPMs per linac
 - fill factor about 78.6%
- 12 different sectors used
- Matching between sectors using 7 quadrupoles to allow for some energy bandwidth
- Single bunch stability ensured by BNS damping
- Multi-bunch coherent offset leads to phase shift of 90° at linac end

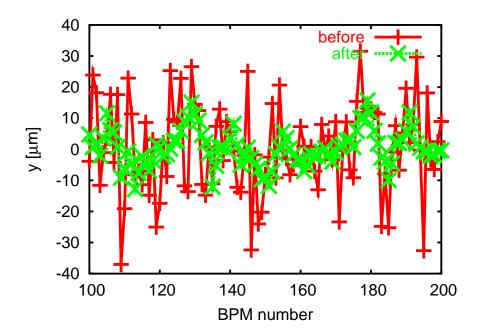


Alignment Model



Alignment Model (cont)

Alignment Model (cont)

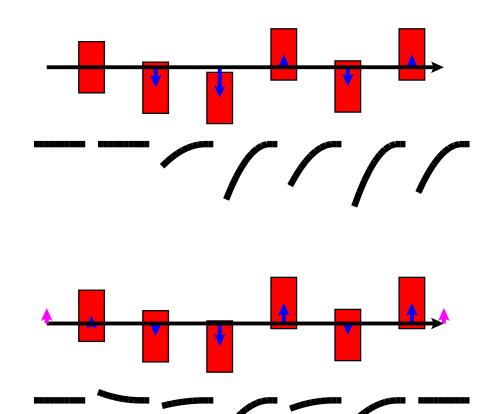

imperfection	with respect to	symbol	target value
BPM offset	wire reference	σ_{BPM}	14 $\mu\mathrm{m}$
BPM resolution		σ_{res}	0.1 $\mu\mathrm{m}$
accelerating structure offset	girder axis	σ_4	10 $\mu\mathrm{m}$
accelerating structure tilt	girder axis	σ_t	$200\mu\mathrm{radian}$
articulation point offset	wire reference	σ_5	12 $\mu\mathrm{m}$
girder end point	articulation point	σ_{6}	$5\mu\mathrm{m}$
wake monitor	structure centre	σ_7	$5\mu\mathrm{m}$
quadrupole roll	longitudinal axis	σ_r	100μ radian

Beam-Based Alignment and Tuning Strategy

- Make beam pass linac
 - one-to-one correction
- Remove dispersion, align BPMs and quadrupoles
 - dispersion free steering
 - ballistic alignment
 - kick minimisation
- Remove wakefield effects
 - accelerating structure alignment
 - emittance tuning bumps
- Tune luminosity
 - tuning knobs

Dispersion Free Correction

- Basic idea: use different beam energies
- Our scheme: accelerate beam with different gradient and initial energy along the pulse
 - dream: 10ns transition, 20ns nominal, 100ns transition, 20 ns probe beam
 - \Rightarrow probe beam bunch length $\approx 45-70 \, \mu \mathrm{m}$
 - both beam within same pulse

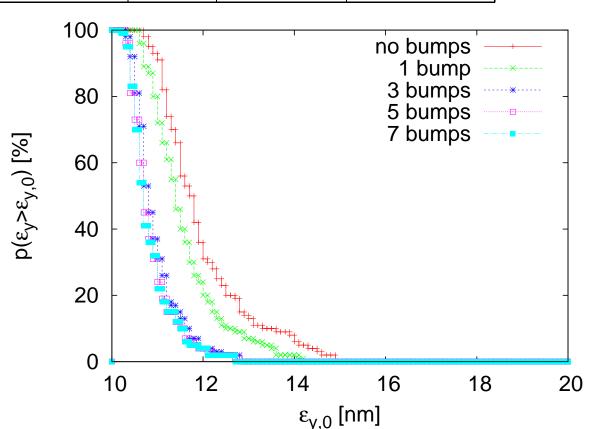

Optimise trajectories for different energies together:

$$S = \sum_{i=1}^{n} \left(w_i(x_{i,1})^2 + \sum_{j=2}^{m} w_{i,j}(x_{i,1} - x_{i,j})^2 \right) + \sum_{k=1}^{l} w'_k(c_k)^2$$

- Last term is omitted
- Idea is to mimic energy differences that exist in the bunch with different beams
- For stability want to use two parts of one pulse

Beam-Based Structure Alignment

- Each structure is equipped with a wake-field monitor (RMS position error $5 \, \mu \mathrm{m}$)
- Up to eight structures on one movable girders
- ⇒ Align structures to the beam
 - Assume identical wake fields
 - the mean structure to wakefield monitor offset is most important
 - in upper figure monitors are perfect, mean offset structure to beam is zero after alignment
 - scatter around mean does not matter a lot
 - With scattered monitors
 - final mean offset is σ_{wm}/\sqrt{n}
 - In the current simulation each structure is moved independently
 - A study has been performed to move the articulation points



- ullet For our tolerance $\sigma_{wm}=5\,\mu\mathrm{m}$ we find $\Delta\epsilon_ypprox0.5\,\mathrm{nm}$
 - some dependence on alignment method

Final Emittance Growth

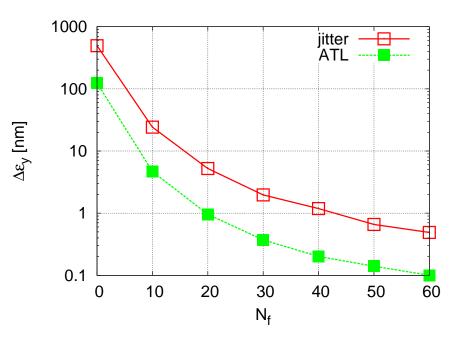
imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	σ_{BPM}	14 $\mu\mathrm{m}$	$0.367\mathrm{nm}$
BPM resolution		σ_{res}	0.1 $\mu\mathrm{m}$	$0.04\mathrm{nm}$
accelerating structure offset	girder axis	σ_4	10 $\mu\mathrm{m}$	$0.03\mathrm{nm}$
accelerating structure tilt	girder axis	σ_t	200 μ radian	$0.38\mathrm{nm}$
articulation point offset	wire reference	σ_5	12 $\mu\mathrm{m}$	$0.1\mathrm{nm}$
girder end point	articulation point	σ_6	$5\mu\mathrm{m}$	$0.02\mathrm{nm}$
wake monitor	structure centre	σ_7	$5\mu\mathrm{m}$	$0.54\mathrm{nm}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian	$\approx 0.12\mathrm{nm}$

- Selected a good DFS implementation
 - trade-offs are possible
- Multi-bunch wakefield misalignments of $10\,\mu\mathrm{m}$ lead to $\Delta\epsilon_y \approx 0.13\,\mathrm{nm}$
- Note: BPM internal accuracy is assumed to be $5 \, \mu \mathrm{m}$

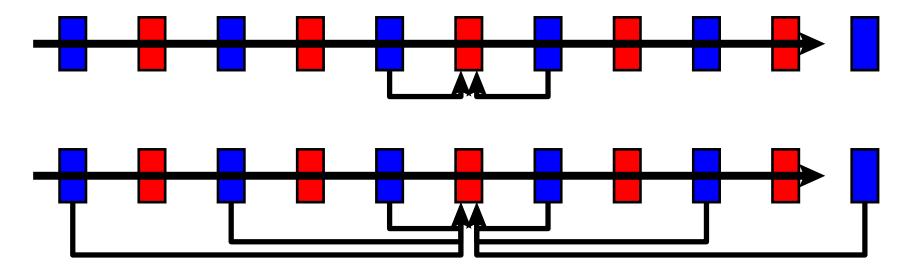
Dynamic Imperfections

- Luminosity loss is part of the emittance budget
- But limit luminosity fluctuation to less than 10%
 - total luminosity fluctuation is not straightforwad

Source	budget	tolerance
Damping ring extraction jitter	0.5%	kick reproducibility $0.1\sigma_x$
Transfer line stray fields	?%	data needed
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\sigma_{jitter} \approx 1.8 \mathrm{nm}$
RF amplitude jitter in main linac	1%	0.075% coherent, $0.22%$ incoherent
RF phase jitter in main linac	1%	0.2° coherent, 0.8° incoherent
RF break down in main linac	1%	rate $< 3 \cdot 10^{-7} \text{m}^{-1} \text{pulse}^{-1}$
Structure pos. jitter in main linac	0.1%	$\sigma_{jitter} \approx 880 \mathrm{nm}$
Structure angle jitter in main linac	0.1%	$\sigma_{jitter} \approx 440 \mathrm{nradian}$
Crab cavity phase jitter	2%	$\sigma_{\phi} \approx 0.017^{\circ}$
Final doublet quadrupole jitter	2%	$\sigma_{jitter} \approx 0.17(0.34) \text{nm} - 0.85(1.7) \text{nm}$
Other quadrupole jitter in BDS	1%	
	?%	


- \Rightarrow Long list of small sources adds up
- ⇒ Impact of feedback system is important

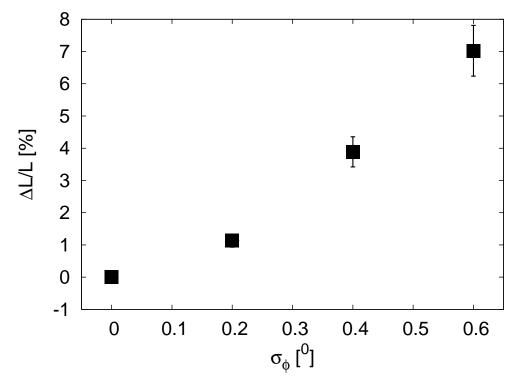
Feedback Studies


- No design for RTML feedback sofar
- Conceptual feedback exists for main linac
- Some studies for BDS exist but no full feedback concept
 - has to come for CDR
- Integrated feedback study is needed
 - most feedback acts on same beam property (orbit)
 - ⇒ have to share bandwidth or integrate into one controller
 - speed of feedback is critical
- Knowledge of the system response is critical for feedback speed
- Have foreseen studies of
 - modelling of ground motion
 - modelling of stabilisation feedback in main linac (BDS not clear)
 - BDS beam-based feedback design
 - beam-beased feedback controller design
 - main linac and BDS feedback performance with some inclusion of RTML

Main Linac Fast Feedback Design

- ullet No feedback leads to $0.5\,\mathrm{nm/s}$ with ATL (B) motion
 - ⇒ ground motion alone could be acceptable, but technical noise, supports...
- Main basis will be a fast BPM-based orbit feedback with single MIMO
- ullet 1000 s ATL motion and 100 nm quadrupole jitter are shown
- Chose 41 BPM stations (8 BPMs each) and 40 corrector stations (2 correctors each)

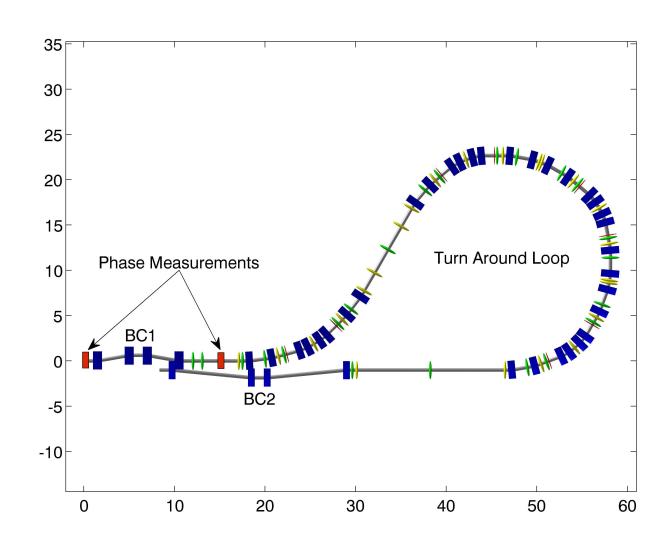
 \Rightarrow can run for O(1000 s)


BPM Resolution and Corrector Step Size

- Assume pulse-to-pulse uncorrelated BPM readout jitter
 - For 100 nm resolution, the emittance growth is for $g=1~\Delta\epsilon_0\approx 0.1~\mathrm{nm}$
 - \Rightarrow little effect left for smaller gain g or better resolution
 - would like to resolve $0.1\sigma_y$ at end of main linac with
 - \Rightarrow ask to explore BPM resolution of about $50 \,\mathrm{nm}$
- Corrector step errors act like quadrupole jitter
 - assume use of 80 correctors simultaneously
 - $\sigma_{step}=2\,\mathrm{nm}$ leads to $\Delta\epsilon_y=0.04\,\mathrm{nm}$ in focusing quadrupoles
 - $\sigma_{step}=3.6\,\mathrm{nm}$ leads to $\Delta\epsilon_y=0.04\,\mathrm{nm}$ in defocusing quadrupoles
 - \Rightarrow require step size of $\Delta y = 5 \, \mathrm{nm}$ with precision $\sigma_{step} = 2 \, \mathrm{nm}$

Drive Beam Phase and Amplitude Jitter

- Drive beam current and phase errors lead to luminosity loss
- Most important is limited BDS energy bandwidth
 - but also emittance growth contributes


$$\frac{\Delta \mathcal{L}}{\mathcal{L}} \approx 0.01 \left[\left(\frac{\sigma_{\phi,coh}}{0.2^{\circ}} \right)^{2} + \left(\frac{\sigma_{\phi,inc}}{0.8^{\circ}} \right)^{2} + \left(\frac{\sigma_{G,coh}}{0.75 \cdot 10^{-3} G} \right)^{2} + \left(\frac{\sigma_{G,inc}}{2.2 \cdot 10^{-3} G} \right)^{2} \right]$$

Example of simulation results, a perfect machine is used with a coherent drive beam phase jitter

Feedforward at Final Turn-Around (Example Layout)

- Final feedforward shown
 - requires timing reference (FP6)
 - phase measurement/prediction (FP7)
 - tuning chicane (PSI)
- Measure phase and change of phase at BC1
- Adjust BC2 with kicker to compensate error
- One could also measure phase and energy at BC1

- \Rightarrow Need phase monitors with better than 0.1° over $\ll 60 \,\mathrm{ns}$ resolution
 - two per decelerator for the main beam, at least five per decelerator for the drive beam
 - one current monitor per drive beam, energy measurement

Other Requirements for Instrumentation

- Instrumentation must fully perform at half the bunch charge and half the number of bunches
 - Graceful degradation at lower intensities
 - More work needed in this field
- The beam physics keeps an impedance model of the machine
 - ⇒ give us your impedance estimates
 - we will tell you if it is OK
- At a later stage we may define impedance budgets
- The vacuum requirement for the main linac is to stay below a few ntorr
 - the value is being reinvestigated
 - locally variations might be acceptable
- The radius of the aperture should be above 4 mm
 - otherwise need an indepth discussion
- BPMs and phase monitors must be read out each pulse within 5ms

Other Instrumentation

- Beam size measurement after the main linac
 - \Rightarrow BDS
- Luminosity emulator
 - laser wire of target beam size at the beginning of the BDS
- Breakdown detection, RF
- Beam loss detection
 - need to define a concept
- Beam energy measurement
 - need to develop a concept
- Beam size measurement in the linac
 - would be very valuable but first need to develop the concept

Conclusion

- Know requirements for BPMs, wake monitors and phase measurements
- Need to work on some other instrumentation requirements
- It is most important to close the loop
 - to include instrumentation performace in our studies
 - to identify strategies to cope with limitations or exploit high performance
 - to arrive at specifications
- We are looking forward to receive input from you