

Verification of the Design of the Beam-based Controller

Jürgen Pfingstner

2. June 2009

Content

- 1. Analysis of the contoller with standard control engineering techniques
- 2. Uncertanty studies of the response matix and the according control performance

Analysis of the contoller with standard control engineering techniques

- Daniel developed a controller, with common sense and feeling for the system
- I tried to verify this intuitive design with, more abstract and standardized methods:
 - Standard nomenclature
 - z transformation
 - Time-discrete transfer functions
 - Pole-zero plots

The model of the accelerator

1.) Perfect aligned beam line

2.) One misaligned QP

- a.) 2 times x_i -> 2 times amplitude
 -> 2 times y_i
- b.) x_i and x_i are independent
- ⇒ Linear system without 'memory'

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & \cdots \\ r_{21} & r_{22} & \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix}$$

$$\Rightarrow y = Rx$$

y ... vector of BPM readings

x ... vector of the QP displacements

R ... response matrix

Mathematical model of the controlled system

r_i ... set value (0)

 \hat{y}_i ... BPM measurements

y_i ... real beam position

v_i ... ground motion

n_i ... BPM noise

u_i, u_{i+1} ... controller state variables

 x_i , x_{i+1} ... plant state variables (QP position)

C(z) ... Controller

G(z) ... Plant

System elements (SISO analogon!)

$$G(z) = \frac{R}{z}$$

- simple
- allpass
- non minimum phase

$$C(z) = (R^*)^{-1} \frac{z}{z-1}$$

I controller

Be aware about the mathematical not correct writing of the TF (matrix instead of scalar)

Stability and Performance

- Stability
 - necessary attenuation at high frequencies
 - all poles at zero

Performance of the interesting transfer functions

•
$$V(z) := \frac{y(z)}{v(z)} = \frac{G(z)}{1 + L(z)} = R \frac{z - 1}{z} \frac{1}{z - (1 - R(R^*)^{-1})}$$

•
$$N(z) := \frac{y(z)}{n(z)} = \frac{1}{1 + L(z)} = \frac{z - 1}{z - (1 - R(R^*)^{-1})}$$

•
$$R(z) := \frac{y(z)}{r(z)} = \frac{L(z)}{1 + L(z)} = R(R^*)^{-1} \frac{1}{z - (1 - R(R^*)^{-1})}$$

$$L(z) := C(z)G(z) = R(R^*)^{-1} \frac{1}{z-1}$$

Important transfer functions

V(z) (ground motion behavior)

10¹

Frequency (Hz)

$$R(z) = N(z)$$

(set point following and measurement noise)

Conclusions

- Controller is:
 - very stable and robust (all poles at zero)
 - integrating behavior (errors will die out)
 - good general performance
 - simple (in most cases a good sign for robustness)
 - measurement noise has a strong influence on the output

Further work

H_∞ optimal control design

Uncertanty studies of the response matix and the according control performance

Controller is robust, but is it robust enough?

no

- Plan A:
 - Use methods from **robust control** to adjust the controller to the properties of the uncertainties (e.g. pole shift)
- Plan B:
 - Use adaptive control techniques to estimate R first and than control accordingly

Tests in PLACET

- Script in PLACET where the following disturbances can be switched on and off:
 - Initial energy E_{init}
 - Energy spread ΔE
 - QP gradient jitter and systematic errors
 - Acceleration gradient and phase jitter
 - BPM noise and failures
 - Corrector errors
 - Ground motion
- Additional PLACET function PhaseAdvance
- 2 Test series (Robustness according to machine drift):
 - Robustness regarding to machine imperfection with perfect controller model
 - Robustness regarding to controller model imperfections with perfect machine
- Analysis of the controller performance and the resulting R

Test procedure

- 1.) Misalign the QP at the begin of the simulation to create an emittance growth at the end of the CLIC main linac
- 2.) Observe the feedback action in respect to the resulting emittance over time
- 3.) Change certain accelerator parameter and repeat 1 and 2.
- => The test focus on the stability and convergence speed more than on the steady-state emittance growth and growth rate. (see metric)

Performance metric

Normalized emittance $\varepsilon(t)$ [$nm \cdot rad$]

 $m := \int_{t=0}^{t=0.4s} \frac{\mathcal{E}(t) - \mathcal{E}_0}{\mathcal{E}_{\text{max}} - \mathcal{E}_0} dt$

 $m(E_{initial})$ 0.8 0.6 0.4 0.2 $m_{\rm max}$ 8.5 9 9.5 10 $E_{initial}$ [GeV]

 \mathcal{E}_0 ... Emittance produced by the DR and RTML $\mathcal{E}(t)$... Emittance at the end of the main linac Theoretical minimum for $m_{\min} = 0.5 \cdot 0.02 = 0.01$

Allowed range for $E_{initial}$ is where $m(E_{initial}) < m_{max} = 0.05$

Results

Quantity	Acceptable values	Nominal values
E _{init}	8.6 – 9.4 GeV	9.0 GeV (± 1 %)
σ_{E}	0.0 - 9.0 %	2.0 % (± <1%)
QP gradient jitter	0.0 - 0.25 %	< 0.1%
QP gradient error (syst.)	0.0 – 0.25 %	
Acceleration gradient variation	0.0 - 0.3 ‰	< 0.3 ‰
Corrector jitter	0.0 - 8.0 nm (std)	< 10 nm (std)
BPM noise	0.0 – 500 nm (std)	< 50 nm (std)
BPM error distributed *2	110 of 2010 (5%)	
BPM block errors *2	6 of 2010	
Ground motion	0.68 x 10 ⁻³ nm/min (≈5d)	

^{*1 ...} Values are according to the multi-pulse projected emittance

^{*2 ...} Failed BPMs that deliver zeros are worse then the one giving random values.

Conclusions

- Controller is very robust in respect to stability
- It is sufficient in respect to disturbances

Thank you for your attention!

z - Transformation

- Method to solve recursive equations
- Equivalent to the Laplace transformation for time-discrete, linear systems
- Allows frequency domain analysis

Measures for the performance

Goal: Find properties of R_{dist} that correspond with the

controller performance

$$abs_{norm}$$

$$M = R_{dist} - R_{nom}$$

$$m_{norm} = \frac{\sum_{i} \sum_{j} |m_{ij}|}{\sum_{i} |r_{norm,ij}|}$$

R_{dist} ... disturbed matrix R_{nom} ... nominal matrix abs_{norm} ... absolut matrix norm

ev_{norm} ... eigenvalue norm L ... matrix that determines the poles of the control loop

Information from abs_{norm} and ev_{norm}

abs_{norm}

Controller works well for:

•
$$abs_{norm} = 0.0 - 0.4$$

ev_{norm}

Controller works well for:

•
$$ev_{norm} = 0.5 - 1.0$$