

LHC-CC09, 3rd LHC Crab Cavity Workshop

Preliminary cost estimates

R. Garoby assembling information from O. Brunner, R. Calaga, E. Montesinos, R. Ostojic, J. Tuckmantel, B. Vullierme

- Phase 1 (preliminary)
- Phase 2 (very preliminary...)

LHC-CC09, 3rd LHC Crab Cavity Workshop

Phase 1 ("Test phase")

* For details, look at the other contributions to this workshop

- "Global" crab scheme
- 1 cavity per ring in P4, at a location reserved for ACN (200 MHz) cavities or for spare damper(s)
- Infrastructure requirement (per cavity):
 - RF:
 - ~ 50 kW CW at 800 MHz (IOT-based unit, as foreseen for the SPS upgrade) installed in a technical gallery
 - Cavity interlocks + Tuning loop + Low Level RF for amplitude and phase stabilization + Controls
 - Cryogenics:
 - Preferably 2 K temperature (He volume < 50 liters)
 - 50 Watt @ 2 K per cavity (or 500 W at 4.6 K)

Phase 1: cost estimate (1 cavity)

RF	High power amplifier (including power supplies) and circulator	380	kCHF
	Infrastructure (civil engineering, cables and pipes)	330	kCHF
	Low Level RF, interlocks and control system	200	kCHF
	Installation	90	kCHF
Cryogenics	Option 1 : 2 K with new QRL service module [requiring removal and reinstallation of an ACS cryomodule + cuts and welds on QRL headers + global pressure tests for a complete sector (34 or 45)]	>500	kCHF
	Option 2 : 4.6 K with modification of supply and return lines of QRL extension to an ACS cryomodule	80	kCHF

Total cost (1 cavity) – excluding cavity:	> 1.5 MCHF (2 K – option 1) or 1.08 MCHF (4.6 K – option 2)
Reminder	
1rst cavity module:	4 M\$
2 nd cavity module:	2 M\$

Phase 2 ("Implementation phase")

Phase 2: attempt at a description*

* For more details, look at the other contributions to this workshop

- "Local" crab scheme at IR1 and IR5
 - 1 (or 2 ?) cavity(ies) / ring on both sides of IP1 and IP5 [= 4 (8?) cavities / IP]
 - Cavity type:
 - Either "Compact" at 800 MHz to fit within the 19cm separation between rings,
 - Or more probably at 400 MHz with a dogleg increasing the distance between beam pipes and \geq 2 cavities / ring on each side of the IP...
- Infrastructure requirement:
 - Civil Engineering for hosting RF amplifiers and their power supplies
 - RF:
 - 8 (16 ?) x 50 kW CW at 800 (400 ?) MHz
 - Cavity interlocks + Tuning loop + Low Level RF for amplitude and phase stabilization + Controls
 - Cryogenics:
 - o 2 (4.5 ?) K temperature

Phase 2: cost estimate (2 IPs)

Civil Engineering	Include space for the CC systems in the new technical galleries for phase 2 of the LHC IR upgrade	?	MCHF
RF	8 (16 ?)x High power amplifiers (including power supplies) and circulators	3 (6 ?)	MCHF
	Infrastructure (cables and pipes)	2.4 (4.8 ?)	MCHF
	Low Level RF, interlocks and control system	1.4 (2.8 ?)	MCHF
	Installation	0.4 (0.8 ?)	MCHF
Cryogenics	Include capability to cool the CC's into the new phase 2 cryogenics cooling systems of IR1 and IR5	?	MCHF

Total cost excluding cavities (very preliminary – certainly dominated by civil engineering which requires a detailed study): >> 10 MCHF

Cavities (guess...): R & D for module hosting 2 (4?) compact 800 MHz cavities: Production of 4 modules (2 cavities/module): 12 M\$

Phase 2: more (private) comments

- Planning and impact on physics data taking is likely to be more important than cost of construction:
- \Rightarrow focus on being ready for Phase 2 of the LHC upgrade (2019?)
- \Rightarrow start asap the R & D for Phase 2 cavities
- The cavities developed for Phase 1 cannot be used for Phase 2:
- ⇒ why not start immediately with the R & D for Phase 2 cavities?
 - Civil Engineering is the cost driver:
- \Rightarrow Invest enough in the Civil Engineering detailed study...