

- 2008 Mini Workshop reminder
- Activities & Planning
- Planning
- Remarks

"Proposal for LHC CC Design Review 2010" T. Linnecar et al.

First questions

- What is the purpose of phase 0?
 - Iuminosity increase (how much is worthwhile)?
 - Proof of Technology and Reliability?
 - Show crabbing works in high intensity hadron machine?
 - Decision 400 or 800 MHz ?

Need clear objectives to prove something.

- Frequency: If phase I @ 400 MHz, why phase 0 @ 800 MHz?
 - 800 MHz cavity is not a prototype for 400 MHz cavity.
- Invisibility for high intensity beam when "off" or "warm"?
 - Do not disturb luminosity physics
 - Instabilities due to CC
- Will point 4 remain available?
- > 2 experiments? How many crab cavities?

LHC Crab Cavities – Schedule seen 2008

			2000	2000		2010		2014		201	
	Contra		2008	20	09	201		201	1	20	1
R & D and test stand work					\vdash		+		++	+	┝
	Vertical test				\vdash		+		++	+	┝
	HOM couplers						+		++	+	┝
	LOW coupler				\vdash		+		++	+	┝
	Main coupler				\vdash		+		++	+	┝
	Tuner				\vdash		+		++	+	┝
	Cryostat	-++		┝┟┢			++		+		┝
onfirmation main parameters	Conceptation and the			┝╺┡					++		┝
Full Prototype Design for installation	Cryostat plus cavity		++				+		++	+	┝
	Personnel / Hardware safety		++				+		++	+	ł
	Tunnel layout, cryogenics interface		++				+		++		ł
	Survey / Alignment		++				+		++	+	┝
	Radiation issues						+		++		┝
	Cavity servo-control control						+		++	+	ł
	Synchronisation control		++				+		++	+	┝
			++				+		++	+	┝
Demonstrative for neurious	RF power source		++				+	++	++	+	ł
Paperwork for review		-++					++		┽╋		┝
Design validation review	Construction encomodulos										ł
Construction & Installation	Eull hunkestests				\vdash						ł
	Construction power source				\vdash						ł
	Construction power source				\vdash		+		++		ł
	Construction electronics				\vdash						ł
	Tuppel mode				\vdash						ł
	Installation				\vdash						ł
	Ream tests						++				ł

• Beam tests end 2012

Now, LHC Phase 1 Upgrade 'Ultimate' planned for 2013/2014 shut down

Colour scheme		
Main critical Path		
Critical activity		
Critical - needs to fit in LHC shutdowns		
Non-critical - if resources available!		

Activity/Workpackage	2009	2010	2011	2012	2013	2014	2015 on
Phase 1							
Cavity "Down Selection"							
Final design proposal "CDR", approval							
Finalize a Cavity Design, prepare specs for manufacture							
Cavity & He tank construction (SBIR model) 2 yrs							
(including all RF tests, tuning, Q vs E measures)							
Cryostat Design, studies, drawings safety approval etc.							
Cryostat Construction (1.5 yrs min)							
Coupler Design & construction							
HOM coupler design & construction & test							
Tuner design and construction							
QRL & Cryogenics (2K) install (10 weeks) + commission							
Preparation/commissioning of test area SM18							
Full power tests, conditioning, measurement in SM18							
Tunnel Installation of RFpower, electronics, infrastructure							
Hardware commissioning in LHC							
Beam Commissioning & Validation							

- Phase 1 Not easy for 2013/14 shutdown (<u>approval</u> & other milestones planning at limit)
- Availability of space in P4 a concern (200 MHz & additional damper may both be needed)
- Another concern: Installation and commissioning of a new crab cavity after just after Phase 1 installation, in view of commissioning which this upgrade itself needs.
- Need to start compact design for Phase 2/Global before validation with beam in Phase 1 in order to manage in a reasonable time...
- Implies double development elliptical and compact at the same time (costly!)
- Should we concentrate on compact design only, but plan for installation and beam test later than 2013/2014, in IR4 or IR1/IR5, after Phase 1 IR upgrade complete & commissioned ?