Safe Beam Tests

R. Assmann, CERN

Thanks to Stefano Redaelli for presenting this talk on my behalf (criticism and complaints please to my address...)

Reference

- Very complete study by Yi-Peng Sun *et al* (presented yesterday)
- Addresses many issues with a lot of detailed simulations and interesting insights, <u>answering many of the previous questions</u>.
- Details see this paper:

Beam Dynamics Aspects of Crab Cavities in the Large Hadron Collider

Yi-Peng Sun,* Ralph Assmann, Javier Barranco, Rogelio Tomás, Thomas Weiler, and Frank Zimmermann European Organization for Nuclear Research (CERN), Geneva, Switzerland

> Rama Calaga BNL, Upton, New York 11973, USA

Akio Morita High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

The Global Crab Cavity in IR4

- Explained before in detail...
- Meant as a demonstration experiment. Goals:
 - Show that crab cavities do not disturb the beam.
 - Show that the predicted gain is really achieved.
- Some price to be paid:
 - Not closed solution, so <u>beam</u>
 <u>changed all around the ring</u>.
 - Have to <u>address issues that</u> would be no problem for a <u>closed solution</u>, e.g. collimation and MP.
 - Additional issues can cause problems...

Goal of this Presentation

- Assess the tests and challenges to be mastered for the global crab cavity program.
- Assess if there are evident show-stoppers.
- Assess implications for doing the crab cavity test program.
- This presentation cannot propose a detailed beam test program with time estimates, detailed beam parameters, ... Requires much more work.
- Cannot present a failure analysis, as proposed in the abstract. This should be driven by the RF specialists.

 $\beta^*=0.55m \rightarrow Present triplets$ $\beta^*=0.25m \rightarrow Phase I triplet upgrade$

Global Crab Cavity Program on One Slide

- Main machine changes:
 - One 800 MHz crab cavity installed in IR4, optimized for IP5.
 - Crab cavity detuned during injection, ramp & squeeze.
 - Ramped up after squeeze for \geq 10 turns to \approx 2.3 MV.
 - Compensation for limited voltage with (one for $\beta^*=0.55m$, both for $\beta^*=0.25m$):
 - Option 1: Decrease fractional horizontal tune to 0.05.
 - Option 2: Increase beta at IR4 crab location to 3 km.
 - Compensation for 0.5-1.0 σ decrease in aperture with either:
 - Option 1: Correct orbit to smaller maximum excursion (smaller margin).
 - Option 2: <u>No squeeze in IR1, IR2, IR8</u>.
 - Collimate head and tail of beam at 0.5-1.0 σ below the canonical 6 σ .
 - Slightly <u>smaller tolerances for dynamic changes</u> in orbit and beta beat (respect of collimation hierarchy).
 - Predicted <u>1-2 σ loss in dynamic aperture</u>.
- Increase in luminosity to be measured in IP5 (decrease in IP1):

- 4% (β^* =0.55m) or 14% (β^* =0.25m)

General Remarks

- There is no clear show-stopper in the proposed crab cavity program, for program as summarized in the previous slide.
- Many questions have been addressed and answers have been provided over the last year. Good progress...
- Some of the machine changes must be considered as major changes and they require significant beam time for testing.
- Will come back to these tests...
- However, before this let's comment on some more advanced proposals:
 - Low emittance option.
 - <u>Replacement of momentum cleaning system with crab cavities</u>

Comments on Low Emittance Option

- It is proposed to use a low emittance beam to enhance the luminosity gain at top energy.
- We must note:
 - This idea relies on gaining normalized aperture with smaller beam size.
 - The gain in aperture is then used to increase the crossing angle, reducing the luminosity.
 - The increased crossing angle is then compensated with the crab cavities, resulting in larger luminosity gain to be observed (25%).
 - Requires that collimators sit at same normalized settings, meaning factor 2 smaller real gaps with low emittance (factor 1.4 with phase I triplet).
- As for the TOTEM beam, this low emittance option cannot be guaranteed from the collimation side.
- The low emittance option imposes much tighter collimation and machine stability tolerances and is very difficult.
- Clear <u>NO to rely on this option (should still try it)</u>.

Comments on Proposal of Momentum Cleaning with Crab Cavities

- This idea relies on using <u>crab cavities to convert energy offsets</u> into horizontal offsets such that particles are cleaned in the <u>betatron cleaning system</u>. Nice concept in principle.
- However, the LHC momentum cleaning system is most needed at the start of the energy ramp, to intercept un-captured beam as specified by the RF group.
- I assume that nobody proposes using crab cavities in the LHC at injection!? This would not work.
- Clear message: Crab cavities cannot replace the momentum cleaning system of the LHC.
- Explained benefit at top energy for such a system: Allows smaller β^* with phase II triplets if limited by off-momentum β beat...
- Let's see top energy losses...

Standard Global Crab Cavity Program

- Main machine changes:
 - One <u>800 MHz local crab cavity installed in IR4</u>, optimized for IP5.
 - Crab cavity detuned during injection, ramp & squeeze.
 - Ramped up after squeeze for \geq 10 turns to \approx 2.3 MV.

 - Compe Stick to the standard global crab cavity
 - program, even if luminosity gain is lower (more realistic) • Opt main excursion (smaller margin). Opti ____, IR2, IR8.
 - Collimate read and tail of beam at 0.5-1.0 σ below the canonical 6 σ .
 - Slightly smaller tolerances for dynamic changes in orbit and beta beat (respect of collimation hierarchy).
 - Predicted <u>1-2 σ loss in dynamic aperture</u>.
- Increase in luminosity to be measured in IP5 (decrease in IP1):

- 4% (β^* =0.55m) or 14% (β^* =0.25m)

Safe Beam Tests

- Safe
 Minimize intensity during tests as much as possible and proceed very systematically.
- Propose <u>three categories of beam tests</u>:
 - **1.** Beam tests before installation of the IR4 crab cavity
 - 2. Beam tests after installation of the IR4 crab cavity, before squeeze and with low intensity
 - 3. Beam tests with crab cavity in collision
- Some major machine changes can be tested without crab cavities and should be tested to avoid later failure.

Beam Tests Before Installation IR4 Crab Cavity I

- Tests should be performed at top energy with a pilot bunch to minimize risks.
- Test 1: Feasibility of high beta option in IR4 at top energy.
 - Verify high beta at proposed crab cavity location.
 - Verify that RF system and beam instrumentation is not disturbed.
 - Verify the local change at top energy without changing beam all around the ring.
 - Verify local IR4 protection against beam/halo losses (e.g. from IR3).
- Test 2: Feasibility of low fractional tune.
 - Set up machine for injection with $Q_x = 0.05 0.1$
 - Set up machine for energy ramp with $Q_x = 0.05 0.1$
 - Set up machine for squeeze with $Q_x = 0.05 0.1$
 - Verify that low fractional tune is a feasible working point with good stability, acceptable lifetime, good beam-beam, ...

Beam Tests Before Installation IR4 Crab Cavity II

- Test 3: Feasibility to collimate at lower gaps.
 - Reduce collimation in steps from 6 σ to 5 σ for different intensities.
 - Verify that beam lifetime, impedance, stability, background, etc remain acceptable for lower collimation gaps.
- Test 4: Feasibility to work with reduced orbit margin.
 - Correct orbit to smaller tolerance such that more aperture is available.
 - Check stability with smaller horizontal tune.
- Test 5: Feasibility to work with reduced dynamic aperture.
 - Measure dynamic aperture with increased IR4 beta and lower fractional tune.
 - Assess room in dynamic aperture, e.g. by reducing the achieved dynamic aperture by 2 σ .
- Test 6: Feasibility of slightly reduced operational margins.
 - Understand operational margins and assess if critical at the 0.1 σ level.

Standard Global Crab Cavity Program

- Main machine changes:
 - One <u>800 MHz local crab cavity installed in IR4</u>, optimized for IP5.
 - Crab cavity detuned during injection, ramp & squeeze.
 - Ramped up after squeeze for \geq 10 turns to \approx 2.3 MV.

 - - Predicted 1-2 σ loss in dynamic aperture.
- Increase in luminosity to be measured in IP5 (decrease in IP1):

- 4% (β^* =0.55m) or 14% (β^* =0.25m)

Beam Tests After Installation IR4 Crab Cavity

- Tests are done without collision.
- Test 1: Feasibility of detuned crab cavity.
 - Verify that impedance is OK during injection and ramp.
 - Measure impedance.
- Test 2: Feasibility of voltage ramp up and down (single bunch, low I)
 - Ramp up voltage over at least 10 turns to 2.3 MV. Ramp down.
 - Measure transverse emittance before and after.
- Test 3: Feasibility of emittance preservation (single bunch, low I)
 - Ramp up cavity voltage to 2.3 MV.
 - Measure emittance versus time and compare to no CC case.
- Test 4: Feasibility of non-closed crabbing (single bunch, low I)
 - Ramp up cavity voltage to 2.3 MV, low tune or high IR4 beta.
 - Verify that collimation and protection hierarchy is maintained.
 - Verify acceptable beam lifetime and background.

Collimation Hierarchy Test

- Up to 1 σ changes of horizontal orbit along a bunch would normally be incompatible with collimation hierarchy.
- This was the reason for the strong concerns put up from our side.
- Latest results show that the retraction is not much reduced by this x-z correlation.
- This is due to a cancellation between the crab induced x-z correlation and the dispersion offset of off-energy particles at the collimators (particles with z offset have also energy offset).
- This is very good news for crab cavities but needs to be confirmed in detailed measurements (effect of phase, optics, ... errors?).
- Normalized distance between collimator families should be measured versus crab cavity voltage.

Beam Tests with Crab Cavity in Collision

- Beam parameters depend on the <u>luminosity measurement</u> <u>resolution for various intensities</u>, To be defined later.
- This crucial test will aim at measuring between 4% and 14% of improvement in luminosity in IP5.
- Careful previous beam tests and optimizations must have resulted in <u>maintaining the beam quality</u> with the crab cavity at 2.3 MV.
- A 4% gain in luminosity seems a priori small to be measured.
- However, we could do it for LEP why not for LHC? <u>Crab cavities provide well controlled parameters</u> that can be changed back and forth.
- See LEP examples on next slides on measured luminosity...
- Would <u>worry more about machine changes</u> than measuring luminosity at the few % level.

At LEP we resolved luminosity changes reproducibly at the few % level without problems. Machine signals better than experiments!

Should also be possible for the LHC with more modern technology!

9/17/2009

LEP Luminosity Resolution – Example 2

Conclusion

- The <u>global crab cavity test in the LHC imposes major machine changes (high</u> beta IR4, low Q_x, collimation at 5σ for head/tail, ...).
- Should <u>stick to the less demanding baseline scenario</u> even if luminosity gain is smaller (no small ε, no "crab collimation").
- No a priori show-stopper visible anymore after quite impressive work progress over the last year. See paper by Yipeng Sun et al.
- Only <u>beam tests will show whether crab cavities are feasible</u> for LHC or not. Clear risks are still visible but also good potential.
- Many machine changes can be tested and proven even without a crab cavity.
 Time consuming tests mean that heavy investment is necessary (effort & beam time). List provided.
- Several tests of crab cavity without collisions are required and possible.
- Final measurement of luminosity change is demanding (4%) but we could do it in LEP, so why not in LHC? Would not worry too much about this...