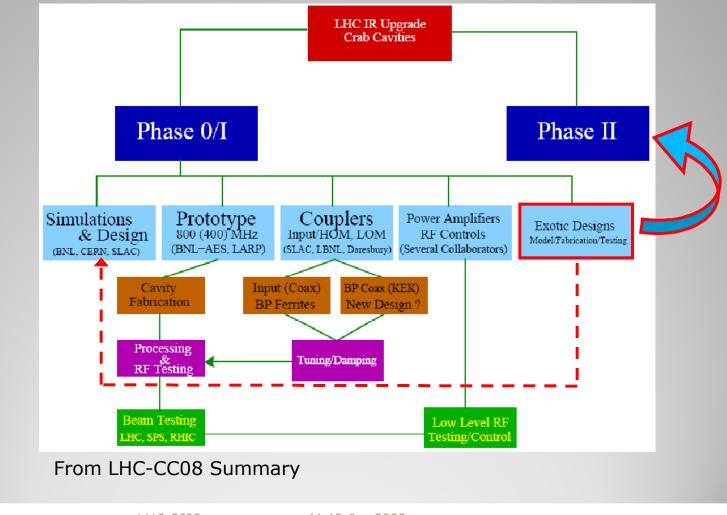


Erk Jensen, CERN BE-RF

16th Sept. 2009


Introductory remarks

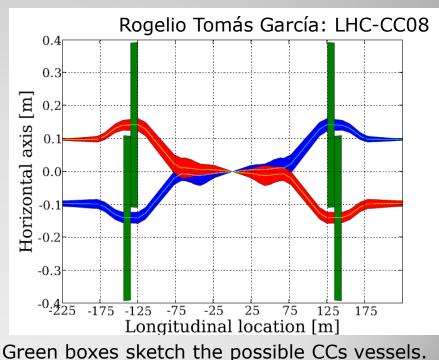
- I'm not an expert on Crab Cavities.
- I will not pretend to be!
- My interest was aroused at last year's Mini-Workshop on "Crab Cavity Validation" @ CERN (21-Aug-2008)
- My main concern:

The validation with a global scheme and a (non-compact) CC near point 4 may be incompatible with LHC operations.

Planned phases

Last year, Peter McIntosh showed this diagram (HHH LHC CC validation workshop, 21-Aug-2008). Compact Crab Cavities are considered "exotic".

Some speculations


- After successful (re-)start-up of the LHC later this year, it will take some time to ramp it up in both energy and luminosity.
- Highest priority then will be given to HEP (... they have already been waiting for one year longer!)
- Unless the case is very strong*), how likely is the OK for a test-cavity in the LHC by say 2011?
- *) not perturbing HEP, at the same time able to demonstrate significant gain. DANGER
- If all this happens and the test will be a success, the result should be **relevant**! (correct beam separation, frequency, ...)

Why compact cavity?

- For significant luminosity gain, **local** crab cavities around each IP would be desired.
- The global scheme uses enlarged beam separation near point 4 (420 mm) – local crab cavities can't rely on this luxury!
- Also, the areas around point 4 will eventually be used by other RF systems and will not remain available (200 MHz capture system/transverse damper upgrade ?)!

Which beam separation?

- LHC normal beam separation: 194 mm.
- With "D1-D2 separation optics" (Fartoukh, Tomás), the parameters could be:
 - Beam separation: \approx 27 cm
 - Available length: ≈ 20 m on each side of IP (between D11 and D12)
 Bogelio Tomás
 - Beam apertures:
 - H: > 106 mm,
 - V: > 70 mm.

My main statement:

- Considering all of the above, I would personally recommend to concentrate R&D effort on
 - a local scheme,
 - compact crab cavities that fit LHC constraints,
 - the technological issues which result from this choice.

2009	2010			2011			2012			2013				2014			2015						
	LHC data t						taking						Upgrade										
Definition																							
		U	IS-L	.ARF	: D	esig	n																
									A	PUL	: ``pr	odu	ctio	n″		Ins	tall	?					
		S	В	Ι	R		?		?														
										S	В	Ι	R		?		?						
LHC crab s' u- dies @ KEk B																							
KEK : contribution to design & production?																							
liuCA	RD -	SR	F "L	HC d	rab	cavi	ties'	"; Co	ockc	roft/	CER	N											
																			Te	est in	LHC	?	
16 6 - 2000						<i>cc</i> 0	~					-	2000										

some ideas on a possible time-line:

Frequency?

- Any integer multiple of 40 MHz is possible (for any bunch spacing integer multiples of 25 ns)
- Need for compact size favours higher frequencies
- However, single high frequency gives nonlinear kick force
 ... this can be eased with multi-*f* approach at the cost of more voltage.
- HOM- (LOM-, SOM-) damping more difficult with smaller cavities?
- Characterizing the "compactness" with r/λ, and with cavity radius < 22 cm (beam separation – aperture radius), what minimum frequency could one imagine?

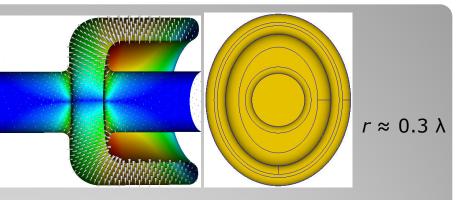
$$f_{\min} = \left(\frac{r}{\lambda}\right) \cdot 1364 \text{ MHz}$$

for 400 MHz, one needs $r/\lambda < 0.29$, for 800 MHz, one needs $r/\lambda < 0.58$.

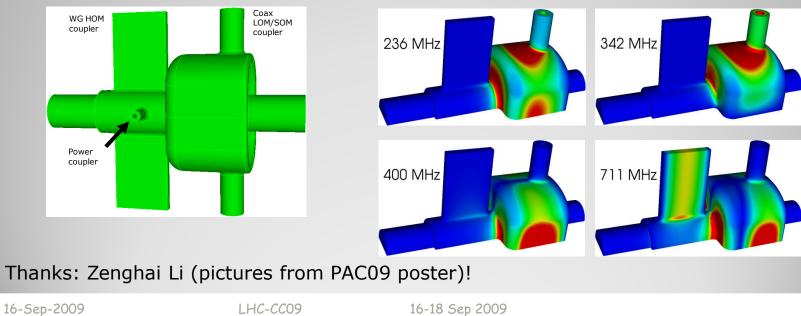
There are ideas around ...

 In the following, some^{*} ideas about topologies that may lead to compact crab cavities.

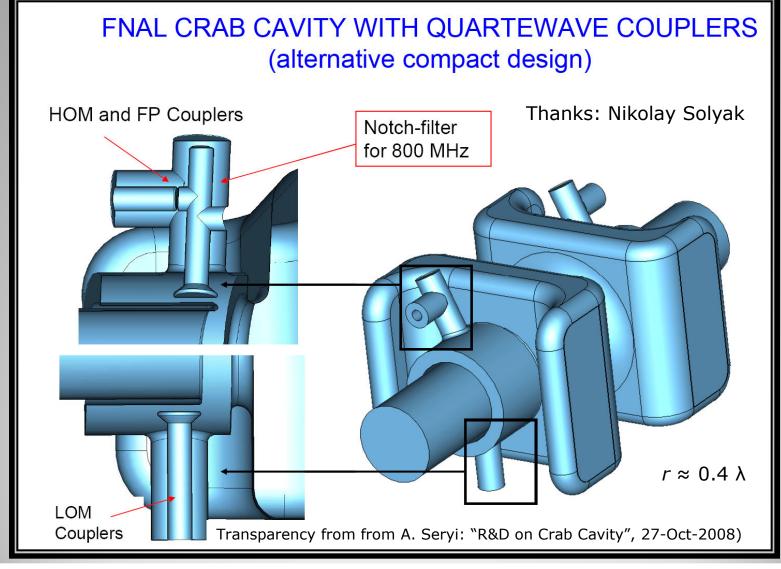
*) Not a complete list!


16-Sep-2009

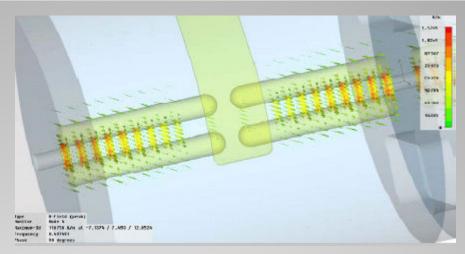
Two "classes" of compact

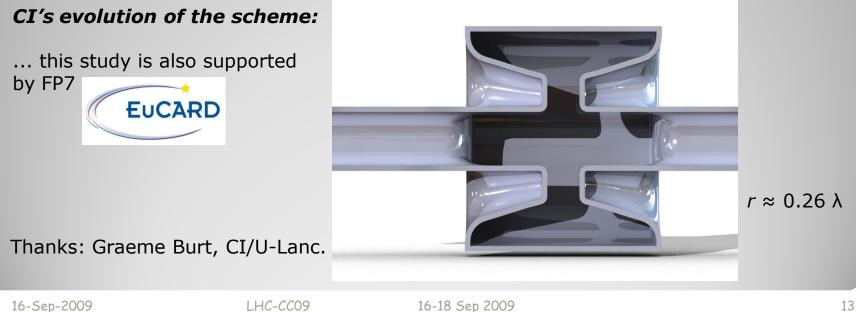

- 1. TM type $E_z(x) = -E_z(-x) \rightarrow \text{Kick force dominated by } v \times B_y$
 - Variations of elliptical cavity ...
 - Half-wave resonator (SLAC, Zenghai Li)
 - Mushroom cavity (FNAL, Nikolay Solyak)
 - Longitudinal rods (JLAB, H. Wang/CI, G. Burt)
- 2. TE type (Panofsky-Wenzel: $j\omega \vec{F}_{\perp} = \nabla_{\perp}F_{z}$!)
 - $B_y = 0 \rightarrow$ Kick force dominated by E_x
 - "transverse pillbox" (Kota Nakanishi)
 - Parallel bars or spokes:
 - Figure-of-8 (CI, Graeme Burt, Peter McIntosh)
 - Spoke cavity (SLAC, Zenghai Li)
 - Parallel bar cavity (JLAB, Jean Delayen)

SLAC Half-wave Resonator


Operating mode Frequency	400 MHz
Operating Mode	TM11
Same-Order Mode Frequency	342 MHz
Iris aperture (diameter)	160 mm
Transverse Shunt Impedance	47 ohm/cavity
Deflecting voltage per cavity	1.25 MV
Peak surface magnetic field	74 mT
Peak surface electric field	35 MV/m

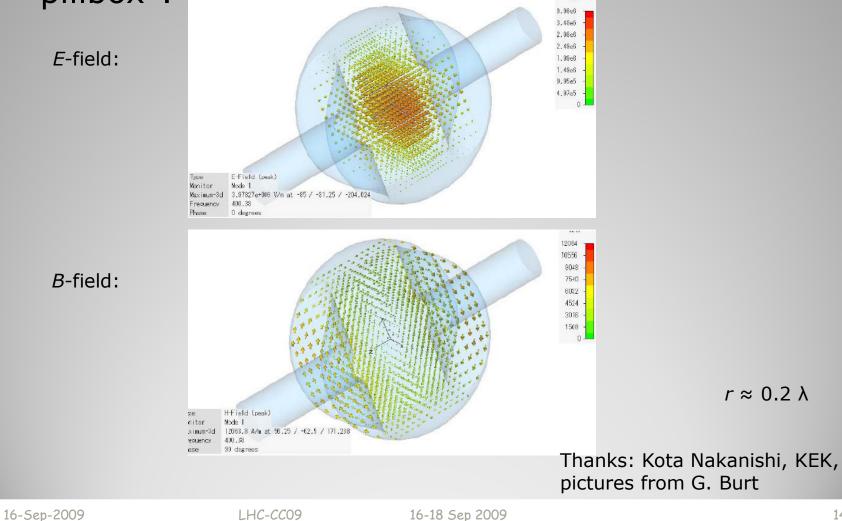
LOM, SOM & HOM damping:


Mushroom cavity


Longitudinal rods

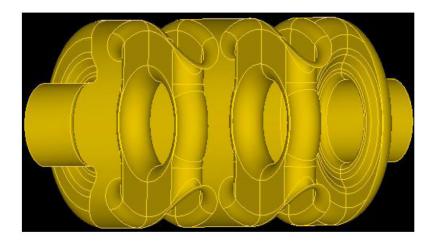
Original JLAB concept:

Thanks: H Wang



Thanks: Peter McIntosh (HHH LHC CC validation workshop, 21-Aug-2008)

"Kota-cavity"


 Kota Nakanishi's idea to use a "transverse pillbox": W/m

14

Spoke cavity

800-MHz Spoke Cavity

Cavity radius: 150 mm

 $r \approx 0.4 \lambda$

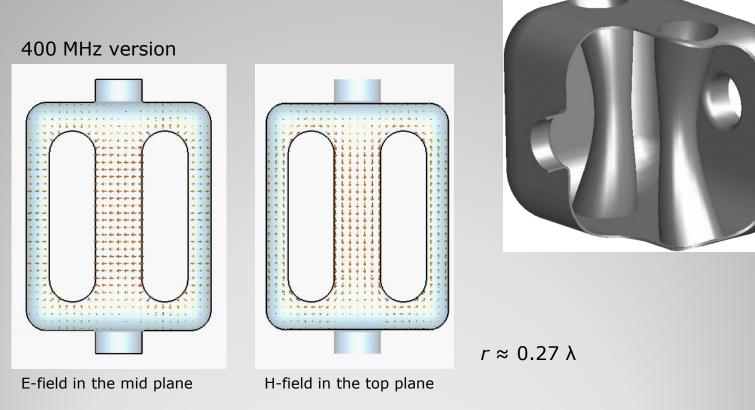
ModelD	Frequency	RoQT(ohm/cavity)				
0	7.91E+08	2.2				
1	8.18E+08	121.4				
2	1.03E+09	9.6				
3	1.13E+09	2.9				
4	1.20E+09	10.6				

Verticle Modes

ModeID	Frequency	RoQT(ohm/cavity)					
0	1.03E+09	9.10E+00					
1	1.11E+09	1.02E+02					
2	1.15E+09	3.55E+01					
3	1.17E+09	4.54E-01					
4	1.32E+09	6.71E-01					

7/16/2008

Crab Cavity for LHC


Zenghai Li

Thanks: Zenghai Li!

Parallel Bar Cavity

Delayen & Wang: "New compact TEM-type deflecting and crabbing rf structure" PRST-AB **12**, 062002 (2009)

Thanks: Jean Delayen, JLAB and Old Dominion University

... but a lot of issues remain!

- High kick field required; surface electric and magnetic fields!
- Fabrication technology (e-beam welding, cleaning, HP water rinsing, ...)
- HOM, LOM (SOM) damping
- Machine impedance
- Multipactor
- Microphonics

• ...

Conclusions

- There is a risk that a validation test with a global scheme and a (non-compact) CC near point 4 may be incompatible with LHC operations.
- Only Compact Crab Cavities are compatible with a Local Scheme.
- In my personal view, one should intensify R&D on Compact Crab Cavities.
- In order to have a chance of success, this R&D must be significant and well coordinated – many issues are unsolved!

Acknowledgement:

I took material from many of you and would like to express my thanks. In particular I acknowledge the quick help from Peter McIntosh, Graeme Burt, Jean Delayen and Zenghai Li!

Not-so-compact vs. compact crab

