Low Level RF & Feedback

M.Grecki, S.Simrock for LLRF team

LHC-CC09, 3rd LHC Crab Cavity Workshop

16-18 September 2009, CERN

Agenda

- LLRF requirements
- Principle of RF Control
- Options for LLRF control
- Sources of Field Perturbations
- Noise sources in LLRF Systems
- Achieved amplitude and phase stability
- Detuning control
- Operation issues
- Software

RF Control Requirements

- Maintain Phase and Amplitude of the accelerating field within given tolerances to accelerate a charged particle beam (e.g. XFEL: 0.01% for amplitude and 0.01 deg. for phase)
- Minimimize Power needed for control
- RF system must be reproducible, reliable, operable, and well understood
- Other performance goals
 - build-in diagnostics for calibration of gradient and phase, cavity detuning, etc.
 - provide exception handling capabilities
 - meet performance goals over wide range of operating parameters

RF System Architecture

System Architecture Details

Control Choices

- Self-excited Loop (SEL) vs Generator Driven System (GDR)
- Vector-sum (VS) vs individual cavity control
- Analog vs Digital Control Design
- Amplitude and Phase (A&P) vs In-phase and Quadrature (I/Q) detector and controller

Analog LLRF system

Digital IO control

Self Excited Loop

Generator Driven Resonator

Block diagram of Universal Controller

Sources of Field Perturbations

Beam loading

- -Beam current fluctuations
- -Pulsed beam transients
- -Multipacting and field emission
- -Excitation of HOMs
- -Excitation of other passband modes
- -Wake fields
- Cavity drive signal
 - -HV- Pulse flatness
 - -HV PS ripple
 - -Phase noise from master oscillator
 - -Timing signal jitter
 - -Mismatch in power distribution

- Cavity dynamics
 - -cavity filling
 - -settling time of field
- Cavity resonance frequency change
- -thermal effects (power dependent)
- -microphonics
- -Lorentz force detuning
- Other
 - -Noise in electronics (mixer, ADC)
 - -Thermal drifts (electronics, cables
 - -Interlock trips
- -Response of feedback system

Noise Sources in LLRF Systems

Error map

Phase noise budget at FLASH

Phase noise measurements :

Subsystem	Phase noise [dBc/Hz]	Residual jitter [fs]	Induced jitter [fs]
MO	see Fig.3	14.1	5.5
DWC (Frontend)	-147	1.8	1.8
DWC (ADC)	-135	5.8	5.8
MOD	-110	1.2	1.2

Contributions to cavity field jitter :

Field stability studies (pulse-to-pulse)

Beam stability at FLASH (ACC1)

IQ sampling down-converter (250kHz):

• IF sampling down-converters (9,54MHz):

Piezos installed at FLASH

Producent ratings	Noliac	PI ceramic
Model:	SCMAS/S1/A/10/10/30/200/42/60 00	P-888.90
Cells:	8	8
Voltage:	< 200 V	< 120 V
Blocking force:	6 kN	3 kN
Size:	10 mm x10 mm x 30 mm	10 mm x10 mm x 35 mm
Capacitance:	6 μF	12 μF

LFD by piezos in ACC6 at FLASH

Iterative learning control

Adaptive learning of optimal feed forward signal

- Beam loading compensation
- Cover repetitive field deviations

Block diagram of ATCA carrier board

ATCA based LLRF system at FLASH

16.09.2009 07:35 Butkowski, Koprek, Piotrowski ATCA-based LLRF system controls in FB mode 24 cavities in ACC456

xTCA for Physics CC Membership

Corporate		Committee			
Members	Corporation/Institution	Members	Corporate		Committee
1	Adlink	1	Members	Corporation/Institution	Members
2	Advanet	1	23	Jblade	1
3	Alcatel-Lucent	1 1	24	Kontron	3
4	Arroyo Technology Consultants	1 1	25	Linear Tecxhnology Corp	2
5	Astek	1 1	26	Lecroy	1
6	BittWare	1 1	27	N.A.T.	1
7	Carlo Gavazzi	1 1	28	National Instruments	1
8	Communication Automation	1 1	29	PCI Systems	1
9	Cypress Point Research	1 1	30	Pentair/Schroff	2
10	DESY	5	31	Performance Technologies	3
11	Diversified Technology	1	32	PICMG Japan	1
12	Elma	3	33	Pigeon Point Systems	1
13	Elma/Bustronic	1 1	34	Pinnacle Data Systems	2
14	Emerson	1 1	35	RadiSys	2
15	FNAL	2	36	Rittal/Kaparel	2
16	Foxconn	1	37	SAIC	1
17	Gage		38	Scan Engineering Telecom	1
18	GE Equip		39	SLAC National Accelerator Lab	2
10			40	Triple Ring Technologies	1
19 20			41	Yamaichi	1
20	Hybricon		41	Totals	60
21	IHEP	2	L	I VIIII	
22	Intel	2			

LLRF software

- Control Algorithms (Fdbck/ Feedforward)
- Meas. QL and detuning
- Cavity Frequency Control (Fast and Slow)
- Amplitude/Phase Calibration
- Vector-Sum Calibration
- Loop phase and loop gain
- Adaptive Feedforward
- Exception Handling
- Klystron Linearization
- Lorentz Force Compensation
- Automation of operation

Conclusion

- Requirements for Crab Cavities LLRF should be investigated and defined
- Current LLRF system at FLASH provides beam energy stability at the level of ~0,01%
- Cavity detuning can be reduced with fast tuners
- Availability, reliability and operability of the LLRF system is very important