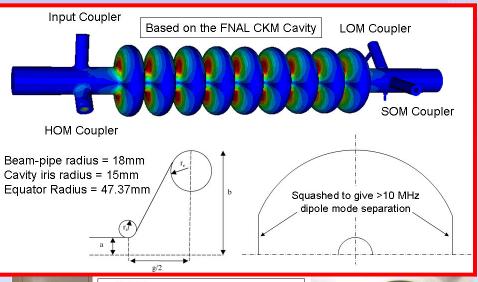
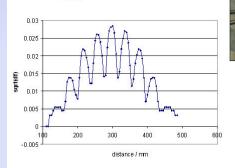


EUCARD Contributions and Funding

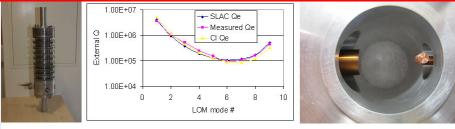
Peter McIntosh (STFC) LHC-CC09, CERN, 16th – 18th September, 2009

Outline

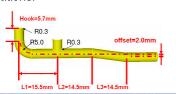

- CC Design Capability in the UK
- EUCARD FP7 LHC-CC Workpackage
- Funding and Deliverables
- UK LHC-CC Qualification Infrastructure
- EUCARD LHC-CC R&D Integration
- Summary

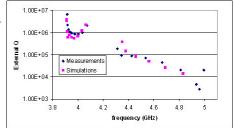


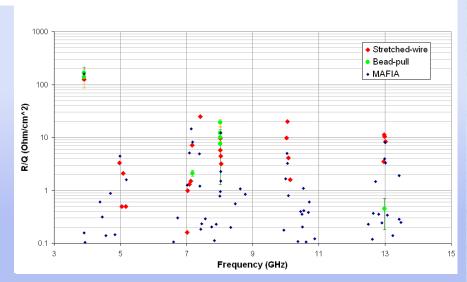
ILC-CC R&D - Cavity



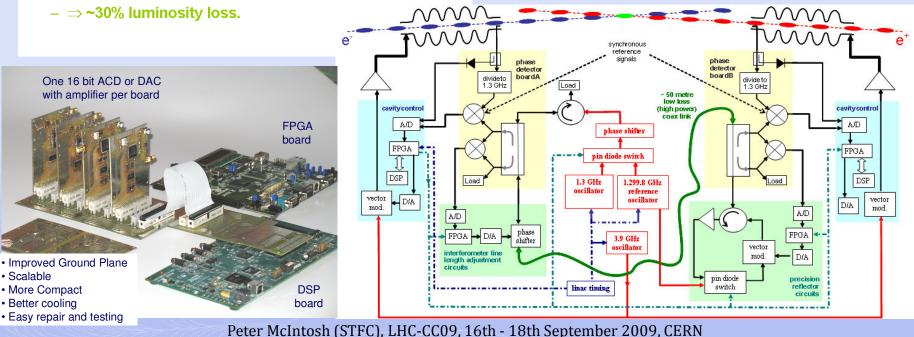
- Model fabricated at DL and used to evaluate:
 - Mode frequencies
 - Cavity coupling
 - HOM, LOM and SOM Qe and R/Q

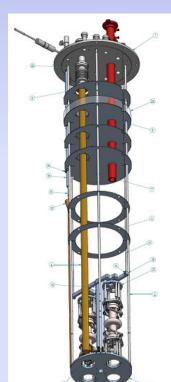




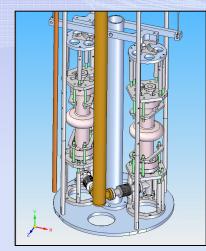

- · Modular design allows evaluation of:
 - Up to 13 cells.
 - Including all mode couplers.

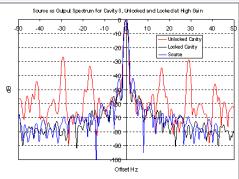
The LOM coupler was found to give good agreement with both MWS and Omega3P simulations.

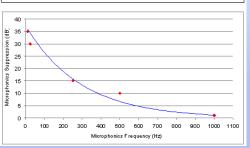



ILC-CC R&D - LLRF


- Bunch-RF phase error in a crab cavity causes unwanted centre-of-mass kick.
- Providing both crab cavities are phase balanced, can compensate these COM kicks.
- ILC crab cavity zero crossings need synchronisation to 94 fs for the 2 % luminosity loss budget.
- Stability required 0.095° phase and 0.33% amplitude
- Main linac timing requirement is nominally 0.1° at 1.3
 GHz or ~ 200 fs and hence cannot be relied upon directly to provide timing signals for the crab cavities:


ILC-CC - Validation





Cavities limited in gradient to 1 MV/m (~40kV/cell)

- Independent phase lock achieved for both cavities:
 - Unlocked ⇒ 10° r.m.s.
 - Locked ⇒ 0.135° r.m.s.
- Performance limited by:
 - Source noise (dominant)
 - ADC noise
 - Measurement noise
 - Cavity frequency drift
 - Microphonics
- Improvements being made.

EUCARD LHC-CC Activity

- Targets the fundamental synergies for the design of crab cavity systems; not only in terms of the RF structure design and wakefield suppression, but also in the RF system control and full system integration and validation.
- Crab cavity and LLRF systems developed for ILC, being verified right now.
- Proposal (WP 10.3) combines both LHC and CLIC CC R&D.
- For LHC:
 - Local system preferred (Phase II):
 - Transverse beam separation restrictions,
 - Frequency limited to 400 600 MHz.
 - Emittance growth is a major concern:
 - $\sim 0.010^{\circ}$ phase tolerance required @ 400 MHz with 300 µrad crossing.

EUCARD SRF-WP10 can be found at: https://espace.cern.ch/SRF/default.aspx

EUCARD LHC-CC Team

- CERN (Switzerland)
 - CERN Coordinator (F Zimmermann)
 - Fellow
 - 18 man months
- CERN Total 18 m.m.
- Fellow appointment Nov. 09
- ULAN-CI (UK)
 - RA-Cavity (C Lingwood)
 - 8 man months
 - RA-LLRF (I Tahir)
 - 6 man months
 - Academic-Cavity (G Burt)
 - 2 man months
 - Academic-LLRF (A Dexter)
 - 2 man months
- **ULAN-CI Total 18 m.m.**
- All in post already

- ASTeC, STFC (UK)
 - WP Coordinator (P McIntosh)
 - 4 man months
 - RF Engineer (P Goudket)
 - 10 man months
 - Mech Designer (Undefined)
 - 4 man months
 - STFC Total 18 m.m.
- All in post already

- Additional effort:
- ULAN-CI:
 - CI-Student (B Hall, 36 m.m.)
 - CI-RA (C Lingwood, 10 m.m.)
- Flexibility to shift some EUCARD staffing funds to capital.

Team Resource Roles

CERN Fellow:

- Links, steering and information exchange with UK, US-LARP and KEK.
- CC integration in LHC:
 - Find space for global CC.
 - Integrate cryostat into LHC infrastructure.
 - Determine auxiliary infrastructure required:
 - RF, cryo, waveguide, QRL, controls etc.
 - Develop plan for CERN LHC-CC test stand.

CI-ULAN RA-Cavity:

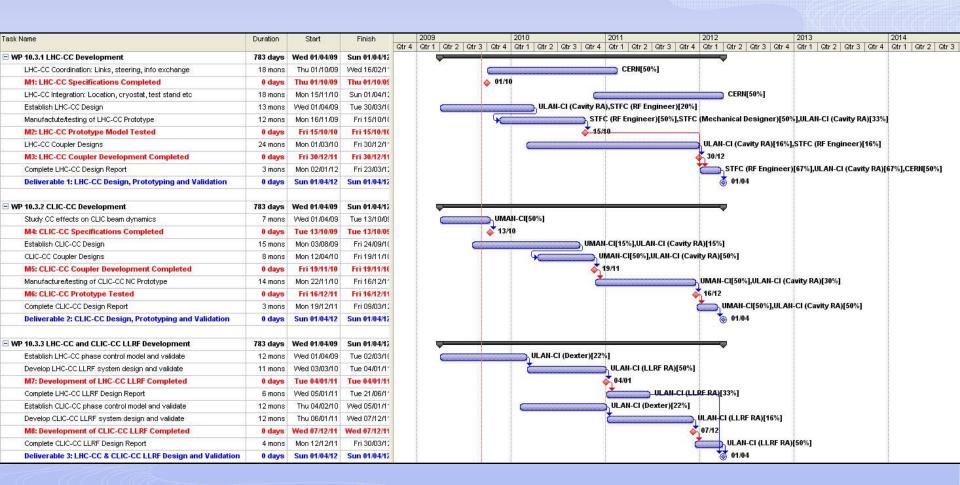
- LHC-CC and coupler development.
- □ CI-ULAN RA-LLRF:
 - LHC-CC LLRF system architecture development.
- CI-ULAN Student:
 - LHC-CC and coupler development.
- ASTeC RF-Eng:
 - LHC-CC and coupler prototype testing.
- Mech-Des:
 - LHC-CC and coupler fabrication.

LHC-CC EUCARD Funding

- STFC, CI-LAN and CERN collaboration
- Total staffing: 1.5 FTE/yr (over 3 years)
- Total LHC-CC proposal cost: 670k€
- Total capital, consumables: 72k€
- Total EUCARD LHC-CC contribution: 203k€
- Objectives:
 - As part of the global LHC-CC collaboration:
 - Develop cavity and coupler designs
 - Identify suitable LLRF system design and architecture
 - Verify integrated system performance (possibility)

Milestones and Deliverables

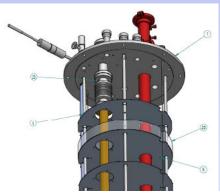
Output ¹	Description	Nature ²	Delivery month ³
M1	LHC crab cavity specifications completed	R	M12
M2	LHC model crab cavity completed	Р	M24
М3	LHC coupler development finished	P/R	M33
M4	CLIC crab cavity specifications completed	R	M12
M5	CLIC model crab cavity completed	Р	M24
M6	CLIC coupler development finished	P/R	M33
M7	Development of LHC LLRF system	Р	M21
M8	Development of CLIC LLRF system	Р	M30
D1	LHC crab cavity final report	R	M36
D2	CLIC crab cavity final report	R	M36
D3	LHC and CLIC LLRF final reports	R	M36

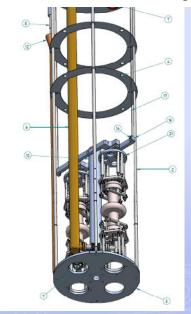

¹ M = Milestone, D = Deliverable

² Nature: R=Report, P=Prototype, D=Demonstrator, O=Other


³ Counted from the starting date

Project Status


ISO 4/5/6 Cleanrooms @ CI



- > ISO 4 (Class 10)
 - > (5.7 m x 2.8 m) = 16 m²
- > ISO 5 (Class 100)
 - > (8.5 m x 3.5 m) = 30 m²
- > ISO 6 (Class 1000)
 - \rightarrow (2.8 m x 2.8 m) = 8 m²
- > Validated March 2007

SRF Vertical Test Facility @ CI

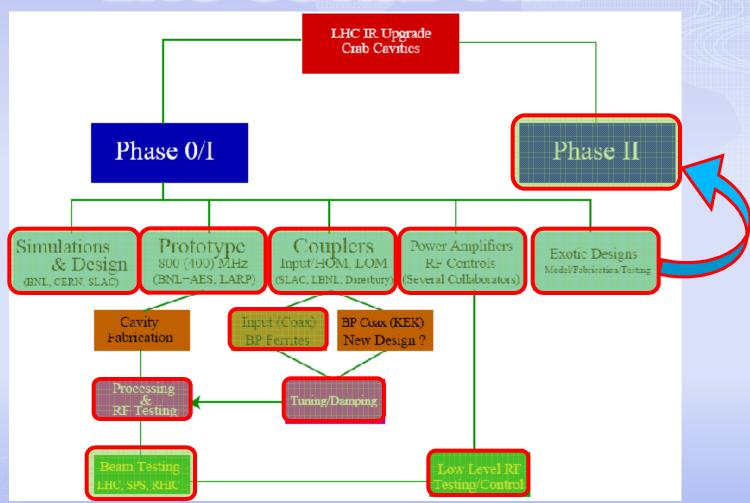
ILC 3.9GHz Crab Cavity Insert

- Cryostat (2.9m x 0.85m)
- 3 layers of magnetic shields
- > 2K pumping capability
- Dewar fed

High Pressure Rinse Facility @ CI

- FNAL designed.
- Cavity moves vertically over rinse nozzles.
- Rinse nozzles rotate inside cavity.
- Uses commercial Bosch Rexroth Linear Actuators.
- Capabilities:
 - 1350psi HP water supply.Rinse nozzle wand 2RPM
 - max.
 - Linear rail 60 inches/min max.
 - Motions are slow, no pinch points.
 - Fully automated.
- Under fabrication:
 - ETA Oct 09.

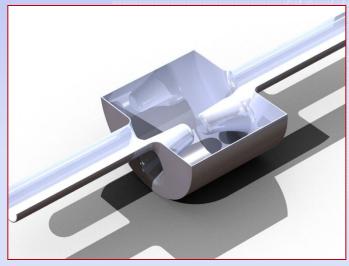
BCP Etching Capability @ CI

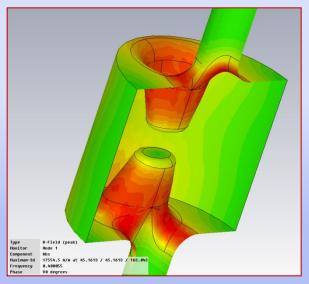

- > BCP fume cupboard
- Single-cell etching
- Manual handling

- > Ultra pure water system
- > >18 $M\Omega/cm$ conductivity
- > TOC monitor included

LHC-CC R&D Plan

From LHC-CC08 BNL, 25-26 Feb 2008


EUCARD FP7 Contribution


Phase II - LHC-CC R&D

- Low surface field solution sought:
 - 0.1 m beam-pipe diam.
 - 0.4 m body diam.
- Preliminary design @ 3 MV/m achieves:

$$E_{\text{max}} = 40 \text{ MV/m}$$

 $B_{\text{max}} = 53 \text{ mT}$

- Further parameterisation possible.
- Collaboration with Jlab and Tech-X initiated.

Summary

- UK have led ILC-CC development through to system validation.
- Design synergies are clear for LHC-CC.
- SRF infrastructure at CI available for LHC-CC component and/or system verification.
- EUCARD LHC-CC design priorities identified, which require meshing with global collaboration effort.
- Cavity down-selection process will define UK resource focus.