Crab Cavity: Impedance & Stability

LHC-CC09, 3rd LHC Crab Cavity Workshop E. Shaposhnikova CERN/BE/RF

longitudinal stability and impedance budget
transverse impedance budget

Acknowledgments: W. Hofle, T. Linnecar, J. Tuckmantel

Beam and machine parameters

Energy	TeV	0.45	7.0
RF frequency	MHz	400.8 (200.4)	400.8
RF voltage	MV	8.0 (3.0)	16.0
synchrotron frequency f _s	Hz	66.08 (28.64)	23.86
revolution frequency f ₀	kHz	11.245	11.245
betatron tune Q_{β} H/V		59.3/64.28	59.3/64.31
longitudinal emittance	eVs	0.6-1.0	1.0-2.5
rms bunch length	ns	0.4	0.275
nominal (upgrade) bunch current	mA	0.2 (0.7)	0.2 (0.7)
number of bunches (symmetric) M		2808 (3564)	2808 (3564)
nominal (upgrade) beam current (symmetric bunches) I ₀	А	0.7 (2.5)	0.7 (2.5)

Longitudinal stability

- Feedback and feedforward systems and longitudinal damper at 400 MHz (~ 1 MHz bandwidth)
- No longitudinal bunch-by-bunch feedback difficult to do better than natural damping (D. Boussard et al.)
- We rely only on Landau damping due to synchrotron frequency spread inside the bunch:
 - Imitation on broad-band impedance budget (ImZ/n)
 - controlled longitudinal emittance blow-up (factor 4) during the ramp
 - proposal for the 2nd harmonic RF system at 800 MHz to be used in bunch-shortening mode (T. Linnecar, E.S., 2007)

Longitudinal stability

Threshold for coupled-bunch instability (equally spaced bunches) due to resonant impedance with frequency $f_r = f_0 n_r = pMf_0 + nf_0 + mf_s$

$$R_{sh} < rac{|\eta|E}{eI_0} (rac{\Delta p}{p})^2 rac{\Delta \omega_s}{\omega_s} rac{F}{f_0 au} x G(x),$$

 f_0 is the revolution frequency, $\eta = 1/\gamma^2 - 1/\gamma_t^2$, I_0 is the average beam current, $\frac{\Delta p}{p}$ is the relative momentum spread, $\frac{\Delta \omega_s}{\omega_s}$ is the relative synchrotron frequency spread, $F \sim 0.3$ is defined by the particle distribution. (V. Balbekov, S. Ivanov, 1984)

Function $xG(x) = x \min\{J_m^{-2}(\pi x)\},\ x = f_r \tau$

Stability on 450 GeV flat bottom

200 MHz RF system

400 MHz RF system

- 200 MHz: 120 kOhm limit for emittance of 0.7 eVs (symmetric bunches) and nominal intensity, 20 kOhm for upgrade intensity and different F
- 400 MHz RF system can be used as Landau cavity (to increase synchrotron frequency spread)

Impedance limit during the LHC cycle for nominal bunch and beam current and different emittances

→ Threshold narrow- and broad-band impedances decrease with beam energy: $R_{sh} \sim (\epsilon^2/E)^{3/4}$, ImZ/n ~ $(\epsilon^2/E)^{5/4}$ → controlled emittance blow-up $\epsilon \sim E^{1/2}$

Beam stability in 400 MHz RF system

- Limit of 150 kOhm for 1 eVs at 7 TeV, nominal intensity (symmetric bunches)
- Factor 1/2 for different bunch distribution (formfactor F)
- Factor 1/3.5 for upgrade intensity
- Factor 4 for 2.5 eVs (nominal) emittance
- 85 kOhm in frequency range (100-600) MHz, relaxed ~ (2τ f_r)^{5/3} outside minimum at f_r ≈ 0.4/τ, (τ is 4 σ bunch length)

Summary:

longitudinal impedance budget

- Requirement for HOM damping in LHC given so far is 60 kOhm (defined by 200 MHz RF at 450 GeV)
- For nominal intensity
 - in 400 MHz RF system we have 80 kOhm for small emittance beam
 - (1 eVs) at 7 TeV, 300 kOhm for 2.5 eVs
 - in 200 MHz RF system it is 70 kOhm , but the 400 MHz RF system can be used as Landau system
- Assumption: no loss of Landau damping due to broad-band impedance (ImZ/n > 0.1 Ohm, budget estimation in LHC DR - 0.07 Ohm), possible for small emittances (<0.7 eVs) at injection into 200 MHz RF system or at 7 TeV in the 400 MHz RF system (< 1 eVs)

10 kOhm for upgrade intensity and two identical cavities

Transverse coupled- bunch instability (narrow-band impedances)

- Instability thresholds are determined by
 - betatron frequency spread:
 - system nonlinearities
 - octupoles
 - space charge
 - long range beam-beam
 - synchrotron frequency spread (m>0)
 - chromaticity
- In LHC there is a bunch-by-bunch transverse feedback system (20 MHz bandwidth) to damp injection oscillations and unstable rigid bunch motion
- Find which growth rates can be damped without significant transverse emittance blow-up with present transverse damper HW

Instability growth time (1/2)

• A resonant transverse impedance with resistive part Z_T [Ohm/m] at resonant frequency f_r will drive coupled bunch mode (n, m) when $f_r = (n+pM+Q_\beta)f_0 + mf_s$ with the growth rate

$$\frac{1}{\tau_m} = \frac{1}{m+1} \frac{1}{4\pi Q_\beta} \frac{cI_0 Z_T}{E/e} F(\omega_r \tau - \omega_\xi \tau)$$

 f_0 and f_s are revolution and synchrotron frequency, M is number of (symmetric) bunches, Q_β is betatron tune, $\omega_\xi = Q_\beta \, \omega_0 \xi / \eta$, ξ is chromaticity, Formfactor F(x) for water-bag bunch: F(0)=1 (the worst mode m=0), F(x > 0.5) ≈ 0.5

Instability growth time (2/2)

- Growth rate ~ $1/E \rightarrow$ maximum at low energy
- At 450 GeV, nominal intensity and one cavity minimum $\tau_{inst} = 0.15$ [s] for $Z_T = 1$ MOhm/m ($\xi=0$): Z_T [MOhm/m] < 0.15 /(1-x)/ τ_d , $x=(f_r - f_\xi)\tau < 0.8$ Z_T [MOhm/m] < 0.3 (1+2x)/ τ_d , x > 0.8 τ_d [s] is the damping time by transverse damper,
 - τ is the bunch length, typically 1.0 ns < τ < 1.5 ns
- For upgrade intensity factor 3.5 down

Damping time (1/2)

- Specifications of the transverse feedback: damping time $\tau_d = 3.6 \text{ ms}$, but (W. Hofle et al.)
 - simultaneous injection oscillation damping
 - resistive wall instability growth time ~17 ms at injection for ultimate intensity (E. Metral, 2008)
 - decoherence time 68 ms (for tune spread 1.3 x10⁻³ and chromaticity $\xi \neq 0$)
 - strict budget for transverse emittance blow-up
 - (2.5%), 2.2% blow-up at ultimate intensity
 - gain roll-off for high frequencies

Damping time (2/2)

 \rightarrow roll-off of gain for kicker and tetrode anode voltage (W. Hofle et al., EPAC'08)

- Frequency roll-off: -1 dB at 1 MHz and -24 dB at 20 MHz
 - $\rightarrow \tau_{d \max}$ = 60 ms
- Crab cavity impedance (for x=0)
 Z_T < 2.5 [MOhm/m]

(The same threshold from betatron frequency spread)

- Formfactor F_m for different longitudinal particle distribution (not water-bag) – up to factor 1/4
- n_c identical cavities: factor 1/n_c
- Weight function $\beta < \beta$ if betafunction at Crab cavity location is different from average

Warning: definition of transverse shunt impedance R_s

• Resonant impedance in [Ohm/m] $Z_T(\omega)=D(\omega) R_s/[1+jQ(w-w^{-1})],$

where w= $\omega_{\prime}\omega_{r}$

 \rightarrow Z_T(ω_r)=D(ω_r) R_s

- A. Chao, K.Y. Ng $D(\omega)=c/\omega, D(\omega_r)=c/\omega_r$
- A. Zotter, S. A. Kheifets $D(\omega)=\omega_r/(j\omega), D(\omega_r)=1/j$
- S. Y. Lee $D(\omega)=2c/(b^2\omega), D(\omega_r)=2c/(b^2\omega_r),$
- b beam pipe radiusG. Dome

 $D(\omega) = \omega_r^2 / (c\omega), D(\omega_r) = \omega_r / c$

• At the resonant frequency

Rs= $|V_T|^2/(2 P)$,

where P is the power loss in the cavity walls and HOM damper for a given level of deflecting voltage V_T on the cavity axis (``circuit" definition, = $\frac{1}{2}$ ``linac" Rs)

- Measured R_s [Ohm] = $Z_T c / \omega_r$
- Calculated ...

Summary: transverse impedance budget

- Threshold for the nominal intensity and one cavity at 450 GeV determined by the damping time of 60 ms is 2.5 MOhm/m
- With margin for particle distribution:
 - $0.6/(1-f_r) MOhm/m f_r [GHz] < 0.8$
 - $1.2(1+2f_r) \text{ MOhm/m} f_r [GHz] > 0.8$
 - 3 MOhm/m at 800 MHz → 0.4 MOhm/m for upgrade intensity and 2 cavities
- Additional factor proportional to local beta-function $\beta < \beta$